Name binding with scope graphs

Eelco Visser
Eelco VisserProfessor of Computer Science at TU Delft
Declare Your Language
Part 2: Name Binding with Scope Graphs
Eelco Visser
Tutorial at POPL 2016
January 18, 2016
Static Name Resolution
module A {
def s = 5
}
module B {
import A
def x = 6
def y = 3 + s
def f =
fun x { x + y }
}
Static Name Resolution
module module
def import def def defA
A
B
6 y funf
x +
x y
x +
3 s
5s
module A {
def s = 5
}
module B {
import A
def x = 6
def y = 3 + s
def f =
fun x { x + y }
}
Static Name Resolution
module module
def import def def defA
A
B
6 y funf
x +
x y
x +
3 s
5s
module A {
def s = 5
}
module B {
import A
def x = 6
def y = 3 + s
def f =
fun x { x + y }
}
Static Name Resolution
module module
def import def def defA
A
B
6 y funf
x +
x y
x +
3 s
5s
module A {
def s = 5
}
module B {
import A
def x = 6
def y = 3 + s
def f =
fun x { x + y }
}
Static Name Resolution
module module
def import def def defA
A
B
6 y funf
x +
x y
x +
3 s
5s
module A {
def s = 5
}
module B {
import A
def x = 6
def y = 3 + s
def f =
fun x { x + y }
}
Static Name Resolution
module module
def import def def defA
A
B
6 y funf
x +
x y
x +
3 s
5s
module A {
def s = 5
}
module B {
import A
def x = 6
def y = 3 + s
def f =
fun x { x + y }
}
Based On …
• Declarative Name Binding and Scope Rules
- NaBL name binding language
- Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, Eelco Visser
- SLE 2012
• A Language Designer's Workbench
- A one-stop-shop for implementation and verification of language designs
- Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Neron, Vlad A. Vergu,
Augusto Passalaqua, Gabriël D. P. Konat
- Onward 2014
• A Theory of Name Resolution
- Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth
- ESOP 2015
• A Constraint Language for Static Semantic Analysis based on Scope
Graphs
- Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco Visser, Guido
Wachsmuth
- PEPM 2016
Detour:
Declare Your Syntax
(an analogy for formalizing declarative name binding)
Pure and declarative syntax definition: paradise lost and regained
Lennart C. L. Kats, Eelco Visser, Guido Wachsmuth
Onward 2010
Language = Set of Sentences
fun (x : Int) { x + 1 }
Text is a convenient interface for writing and reading programs
Language = Set of Trees
Fun
AddArgDecl
VarRefId Int
“1”
VarDeclId
“x”
TXINT
“x”
Tree is a convenient interface for transforming programs
Tree Transformation
Tree is a convenient interface for transforming programs
Semantic
transform
translate
eval
analyze
refactor
type check
Syntactic
coloring
outline view
completion
Language = Sentences and Trees
parse
format
different representations convenient for different purposes
SDF3 defines Trees and Sentences
parse(s) = t where format(t) == s (modulo layout)
Expr.Int = INT
Expr.Add = <<Expr> + <Expr>>
Expr.Mul = <<Expr> * <Expr>>
trees
(structure)
parse
(text to tree)
format
(tree to text)
+ =>
Grammar Engineering in Spoofax
Ambiguity
Ambiguity
t1 != t2 / format(t1) = format(t2)
Add
VarRef VarRef
“y”“x”
Mul
Int
“3”
Add
VarRef
VarRef
“y”
“x”
Mul
Int
“3”
3 * x + y
Declarative Disambiguation
parse filter
Disambiguation Filters
Klint & Visser (1994), Van den Brand, Scheerder, Vinju, Visser (CC 2002)
Priority and Associativity
context-free syntax
Expr.Int = INT
Expr.Add = <<Expr> + <Expr>> {left}
Expr.Mul = <<Expr> * <Expr>> {left}
context-free priorities
Expr.Mul > Expr.Add
Recent improvement: safe disambiguation of operator precedence
Afroozeh et al. (SLE 2013, Onward 2015)
Add
VarRef VarRef
“y”“x”
Mul
Int
“3”
Add
VarRef
VarRef
“y”
“x”
Mul
Int
“3”
3 * x + y
Declarative Syntax Definition
• Representation: (Abstract Syntax) Trees
- Standardized representation for structure of programs
- Basis for syntactic and semantic operations
• Formalism: Syntax Definition
- Productions + Constructors + Templates + Disambiguation
- Language-specific rules: structure of each language construct
• Language-Independent Interpretation
- Well-formedness of abstract syntax trees
‣ provides declarative correctness criterion for parsing
- Parsing algorithm
‣ No need to understand parsing algorithm
‣ Debugging in terms of representation
- Formatting based on layout hints in grammar
Declare Your Names
A Theory of Name Resolution
Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth
ESOP 2015
Language = Set of Trees
Fun
AddArgDecl
VarRefId Int
“1”
VarDeclId
“x”
TXINT
“x”
Tree is a convenient interface for transforming programs
Language = Set of Graphs
Fun
AddArgDecl
VarRefId Int
“1”
VarDeclId TXINT
Edges from references to declarations
Fun
AddArgDecl
VarRefId Int
“1”
VarDeclId
“x”
TXINT
“x”
Language = Set of Graphs
Names are placeholders for edges in linear / tree representation
Name Resolution is Pervasive
• Used in many different language artifacts
- compiler
- interpreter
- semantics
- IDE
- refactoring
• Binding rules encoded in many different and ad-hoc ways
- symbol tables
- environments
- substitutions
• No standard approach to formalization
- there is no BNF for name binding
• No reuse of binding rules between artifacts
- how do we know substitution respects binding rules?
NaBL Name Binding Language
binding rules // variables
Param(t, x) :
defines Variable x of type t
Let(bs, e) :
scopes Variable
Bind(t, x, e) :
defines Variable x of type t
Var(x) :
refers to Variable x
Declarative Name Binding and Scope Rules
Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, Eelco Visser
SLE 2012
Declarative specification
Abstracts from implementation
Incremental name resolution
But:
How to explain it to Coq?
What is the semantics of NaBL?
NaBL Name Binding Language
Declarative Name Binding and Scope Rules
Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, Eelco Visser
SLE 2012
Especially:
What is the semantics of imports?
binding rules // classes
Class(c, _, _, _) :
defines Class c of type ClassT(c)
scopes Field, Method, Variable
Extends(c) :
imports Field, Method from Class c
ClassT(c) :
refers to Class c
New(c) :
refers to Class c
A Theory of Name Resolution
• Representation: Scope Graphs
- Standardized representation for lexical scoping structure of programs
- Path in scope graph relates reference to declaration
- Basis for syntactic and semantic operations
- Supports ambiguous / erroneous programs
• Formalism: Name Binding Specification
- References + Declarations + Scopes + Reachability + Visibility
- Language-specific rules: mapping constructs to scope graph
• Language-Independent Interpretation
- Resolution calculus
‣ Correctness of path with respect to scope graph
‣ Separation of reachability and visibility (disambiguation)
- Name resolution algorithm
‣ sound wrt calculus
- Transformation
‣ Alpha equivalence, substitution, refactoring, …
Outline
• Reachability
- References, Declarations, Scopes, Resolution Paths
- Lexical, Imports, Qualified Names
• Visibility
- Ambiguous resolutions
- Disambiguation: path specificity, path wellformedness
• Examples
- let, def-before-use, inheritance, packages, imports, namespaces
• Formal framework
- Generalizing reachability and visibility through labeled scope edges
- Resolution algorithm
- Alpha equivalence
• Names and Types
- Type-dependent name resolution
• Constraint Language
Reachability
(Slides by Pierre Néron)
A Calculus for Name Resolution
S R1 R2 SR
SRS
I(R1)
S’S
S’S P
Sx
Sx R
xS
xS D
Path in scope graph connects reference to declaration
Scopes, References, Declarations, Parents, Imports
Simple Scopes
def y1 = x2 + 1
def x1 = 5
Simple Scopes
def y1 = x2 + 1
def x1 = 5
Simple Scopes
def y1 = x2 + 1
def x1 = 5
Simple Scopes
S0
def y1 = x2 + 1
def x1 = 5
Simple Scopes
Scope
S0
def y1 = x2 + 1
def x1 = 5
S0
S
Simple Scopes
Declaration
Scope
S0
def y1 = x2 + 1
def x1 = 5
y1
x1S0
S
x
Simple Scopes
Reference
Declaration
Scope
S0
def y1 = x2 + 1
def x1 = 5
y1
x1S0x2
S
x
x
Simple Scopes
Reference
Declaration
Scope
Reference Step
S0
def y1 = x2 + 1
def x1 = 5
Sx
Sx R
y1
x1S0x2
S
x
x
Simple Scopes
Reference
Declaration
Scope
Reference Step
S0
def y1 = x2 + 1
def x1 = 5
Sx
Sx R
R
y1
x1S0x2
S
x
x
Simple Scopes
Reference
Declaration
Scope
Reference Step Declaration Step
S0
def y1 = x2 + 1
def x1 = 5
Sx
Sx R
xS
xS D
R
y1
x1S0x2
S
x
x
Simple Scopes
Reference
Declaration
Scope
Reference Step Declaration Step
S0
def y1 = x2 + 1
def x1 = 5
Sx
Sx R
xS
xS D
R D
y1
x1S0x2
S
x
x
Lexical Scoping
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
Lexical Scoping
S0
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
Lexical Scoping
S1
S0
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
Lexical Scoping
S1
S0
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
z1
x1S0z2
Lexical Scoping
S1
S0
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S1
y1y2 x2
z1
x1S0z2
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S1
y1y2 x2
z1
x1S0z2
S’S
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S1
y1y2 x2
z1
x1S0z2
S’S
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S1
y1y2 x2
z1
x1S0z2
S’S
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S1
y1y2 x2
z1
x1S0z2
R
S’S
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S1
y1y2 x2
z1
x1S0z2
R
D
S’S
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S1
y1y2 x2
z1
x1S0z2
R
S’S
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S’S
S’S P
S1
y1y2 x2
z1
x1S0z2
R
S’S
Parent Step
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S’S
S’S P
S1
y1y2 x2
z1
x1S0z2
R
P
S’S
Parent Step
Lexical Scoping
S1
S0
Parent
def x1 = z2 5
def z1 =
fun y1 {
x2 + y2
}
S’S
S’S P
S1
y1y2 x2
z1
x1S0z2
R
P
D
S’S
Parent Step
Imports
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
Imports
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
A1
SA
z1
B1
SB
z2
S0
A2
x1
Imports
Associated scope
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
R
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
R
S R1 R2 SR
SRS
I(R1)
Import Step
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
R
R
S R1 R2 SR
SRS
I(R1)
Import Step
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
R
R
P
S R1 R2 SR
SRS
I(R1)
Import Step
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
R
R
P
D
S R1 R2 SR
SRS
I(R1)
Import Step
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
I(A2
)R
R
P
D
S R1 R2 SR
SRS
I(R1)
Import Step
Imports
Associated scope
Import
S0
SB
SA
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
S R1
R2 SR
A1
SA
z1
B1
SB
z2
S0
A2
x1
I(A2
)R
R
D
P
D
S R1 R2 SR
SRS
I(R1)
Import Step
Qualified Names
module N1 {
def s1 = 5
}
module M1 {
def x1 = 1 + N2.s2
}
S0
Qualified Names
module N1 {
def s1 = 5
}
module M1 {
def x1 = 1 + N2.s2
}
S0
Qualified Names
module N1 {
def s1 = 5
}
module M1 {
def x1 = 1 + N2.s2
}
S0
N1
SN
s2
S0
N2
X1
s1
Qualified Names
module N1 {
def s1 = 5
}
module M1 {
def x1 = 1 + N2.s2
}
S0
N1
SN
s2
S0
N2
X1
s1
Qualified Names
module N1 {
def s1 = 5
}
module M1 {
def x1 = 1 + N2.s2
}
S0
N1
SN
s2
S0
N2
R
D
X1
s1
Qualified Names
module N1 {
def s1 = 5
}
module M1 {
def x1 = 1 + N2.s2
}
S0
N1
SN
s2
S0
N2
R
D
R
I(N2) D
X1
s1
A Calculus for Name Resolution
S R1 R2 SR
SRS
I(R1)
S’S
S’S P
Sx
Sx R
xS
xS D
Reachability of declarations from references
through scope graph edges
How about ambiguities?
References with multiple paths
Visibility
(Disambiguation)
(Slides by Pierre Néron)
A Calculus for Name Resolution
S R1 R2 SR
SRS
I(R1)
S’S
S’S P
Sx
Sx R
xS
xS D
I(_).p’ < P.p
D < I(_).p’
D < P.p
s.p < s.p’
p < p’
Reachability
VisibilityWell formed path: R.P*.I(_)*.D
Ambiguous Resolutions
S0def x1 = 5
def x2 = 3
def z1 = x3 + 1
Ambiguous Resolutions
z1
x2
x1S0x3
S0def x1 = 5
def x2 = 3
def z1 = x3 + 1
Ambiguous Resolutions
z1
x2
x1S0x3
RS0def x1 = 5
def x2 = 3
def z1 = x3 + 1
Ambiguous Resolutions
z1
x2
x1S0x3
R DS0def x1 = 5
def x2 = 3
def z1 = x3 + 1
Ambiguous Resolutions
z1
x2
x1S0x3
R
D
S0def x1 = 5
def x2 = 3
def z1 = x3 + 1
Ambiguous Resolutions
z1
x2
x1S0x3
R D
D
S0def x1 = 5
def x2 = 3
def z1 = x3 + 1
Ambiguous Resolutions
match t with
| A x | B x => …
z1
x2
x1S0x3
R D
D
S0def x1 = 5
def x2 = 3
def z1 = x3 + 1
Shadowing
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
Shadowing
S0
S1
S2
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
Shadowing
S0
S1
S2
S1
S2
x1
y1
y2 x2
z1
x3S0z2
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
Shadowing
S0
S1
S2
S1
S2
x1
y1
y2 x2
z1
x3S0z2
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
Shadowing
S0
S1
S2
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
S1
S2
x1
y1
y2 x2
z1
x3S0z2
R
P
P
D
Shadowing
S0
S1
S2
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
S1
S2
x1
y1
y2 x2
z1
x3S0z2
D
P
R
R
P
P
D
Shadowing
S0
S1
S2
D < P.p
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
S1
S2
x1
y1
y2 x2
z1
x3S0z2
D
P
R
R
P
P
D
Shadowing
S0
S1
S2
D < P.p
s.p < s.p’
p < p’
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
S1
S2
x1
y1
y2 x2
z1
x3S0z2
D
P
R
R
P
P
D
Shadowing
S0
S1
S2
D < P.p
s.p < s.p’
p < p’
def x3 = z2 5 7
def z1 =
fun x1 {
fun y1 {
x2 + y2
}
}
S1
S2
x1
y1
y2 x2
z1
x3S0z2
D
P
R
R
P
P
D
R.P.D < R.P.P.D
Imports shadow Parents
S0def z3 = 2
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
SA
SB
Imports shadow Parents
A1
SA
z1
B1
SB
z2
S0
A2
x1
z3
S0def z3 = 2
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
SA
SB
Imports shadow Parents
A1
SA
z1
B1
SB
z2
S0
A2
x1
z3
S0def z3 = 2
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
SA
SB
Imports shadow Parents
A1
SA
z1
B1
SB
z2
S0
A2
x1
I(A2
)R D
z3
S0def z3 = 2
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
SA
SB
Imports shadow Parents
A1
SA
z1
B1
SB
z2
S0
A2
x1
I(A2
)R D
P
D
z3
R
S0def z3 = 2
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
SA
SB
Imports shadow Parents
I(_).p’ < P.p
A1
SA
z1
B1
SB
z2
S0
A2
x1
I(A2
)R D
P
D
z3
R
S0def z3 = 2
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
SA
SB
Imports shadow Parents
I(_).p’ < P.p R.I(A2).D < R.P.D
A1
SA
z1
B1
SB
z2
S0
A2
x1
I(A2
)R D
P
D
z3
R
S0def z3 = 2
module A1 {
def z1 = 5
}
module B1 {
import A2
def x1 = 1 + z2
}
SA
SB
Imports vs. Includes
S0def z3 = 2
module A1 {
def z1 = 5
}
import A2
def x1 = 1 + z2
SA
Imports vs. Includes
S0def z3 = 2
module A1 {
def z1 = 5
}
import A2
def x1 = 1 + z2
SA A1
SA
z1
z2
S0
A2
x1z3
Imports vs. Includes
S0def z3 = 2
module A1 {
def z1 = 5
}
import A2
def x1 = 1 + z2
SA A1
SA
z1
z2
S0
A2
x1
R
z3
D
Imports vs. Includes
S0def z3 = 2
module A1 {
def z1 = 5
}
import A2
def x1 = 1 + z2
SA A1
SA
z1
z2
S0
A2
x1
I(A2
)
R
D
z3
R
D
Imports vs. Includes
S0def z3 = 2
module A1 {
def z1 = 5
}
import A2
def x1 = 1 + z2
SA A1
SA
z1
z2
S0
A2
x1
I(A2
)
R
D
z3
R
D
D < I(_).p’
Imports vs. Includes
S0def z3 = 2
module A1 {
def z1 = 5
}
import A2
def x1 = 1 + z2
SA A1
SA
z1
z2
S0
A2
x1
I(A2
)
R
D
z3
R
D
D < I(_).p’
R.D < R.I(A2).D
Imports vs. Includes
A1
SA
z1
z2
S0
A2
x1
I(A2
)
R
D
z3
R
D
D < I(_).p’
R.D < R.I(A2).D
S0def z3 = 2
module A1 {
def z1 = 5
}
include A2
def x1 = 1 + z2
SA
Imports vs. Includes
A1
SA
z1
z2
S0
A2
x1
I(A2
)
R
D
z3
R
D
D < I(_).p’
R.D < R.I(A2).D
S0def z3 = 2
module A1 {
def z1 = 5
}
include A2
def x1 = 1 + z2
SA
X
Imports vs. Includes
A1
SA
z1
z2
S0
A2
x1
I(A2
)
R
D
z3
R
D
D < I(_).p’
S0def z3 = 2
module A1 {
def z1 = 5
}
include A2
def x1 = 1 + z2
SA
X
Import Parents
def s1 = 5
module N1 {
}
def x1 = 1 + N2.s2
S0
SN
Import Parents
def s1 = 5
module N1 {
}
def x1 = 1 + N2.s2
S0
SN
Import Parents
def s1 = 5
module N1 {
}
def x1 = 1 + N2.s2
S0
SN
N1
SN
s2
S0
N2
X1
s1
Import Parents
def s1 = 5
module N1 {
}
def x1 = 1 + N2.s2
S0
SN
N1
SN
s2
S0
N2
X1
s1
R
I(N2)
D
P
Import Parents
def s1 = 5
module N1 {
}
def x1 = 1 + N2.s2
S0
SN
N1
SN
s2
S0
N2
X1
s1
R
I(N2)
D
P
Import Parents
def s1 = 5
module N1 {
}
def x1 = 1 + N2.s2
S0
SN
Well formed path: R.P*.I(_)*.D
N1
SN
s2
S0
N2
X1
s1
R
I(N2)
D
P
Transitive vs. Non-Transitive
module A1 {
def z1 = 5
}
module B1 {
import A2
}
module C1 {
import B2
def x1 = 1 + z2
}
SA
SB
SC
Transitive vs. Non-Transitive
module A1 {
def z1 = 5
}
module B1 {
import A2
}
module C1 {
import B2
def x1 = 1 + z2
}
SA
SB
SC
Transitive vs. Non-Transitive
??
module A1 {
def z1 = 5
}
module B1 {
import A2
}
module C1 {
import B2
def x1 = 1 + z2
}
SA
SB
SC
Transitive vs. Non-Transitive
A1
SA
z1
B1
SB
S0
A2
C1
SCz2
x1 B2
??
module A1 {
def z1 = 5
}
module B1 {
import A2
}
module C1 {
import B2
def x1 = 1 + z2
}
SA
SB
SC
Transitive vs. Non-Transitive
A1
SA
z1
B1
SB
S0
A2
I(A2
)
D
C1
SCz2
I(B2
)
R
x1 B2
??
module A1 {
def z1 = 5
}
module B1 {
import A2
}
module C1 {
import B2
def x1 = 1 + z2
}
SA
SB
SC
Transitive vs. Non-Transitive
With transitive imports, a well formed path is R.P*.I(_)*.D
With non-transitive imports, a well formed path is R.P*.I(_)?
.D
A1
SA
z1
B1
SB
S0
A2
I(A2
)
D
C1
SCz2
I(B2
)
R
x1 B2
??
module A1 {
def z1 = 5
}
module B1 {
import A2
}
module C1 {
import B2
def x1 = 1 + z2
}
SA
SB
SC
A Calculus for Name Resolution
S R1 R2 SR
SRS
I(R1)
S’S
S’S P
Sx
Sx R
xS
xS D
I(_).p’ < P.p
D < I(_).p’
D < P.p
s.p < s.p’
p < p’
Reachability
VisibilityWell formed path: R.P*.I(_)*.D
Examples
(From TUD-SERG-2015-001. Adapted for this screen)
Let Bindings
1
2
b2a1 c3
a4
b6
c12a10 b11
c5
b9
a7
c8
def a1 = 0
def b2 = 1
def c3 = 2
letpar
a4 = c5
b6 = a7
c8 = b9
in
a10+b11+c12
1
b2a1 c3
a4
b6
c12a10 b11
c5
b9
a7
c8
2
def a1 = 0
def b2 = 1
def c3 = 2
letrec
a4 = c5
b6 = a7
c8 = b9
in
a10+b11+c12
1
b2a1 c3
a4
b6
c12a10 b11
c5
b9
a7
c8
2
4
3
def a1 = 0
def b2 = 1
def c3 = 2
let
a4 = c5
b6 = a7
c8 = b9
in
a10+b11+c12
Definition before Use / Use before Definition
class C1 {
int a2 = b3;
int b4;
void m5 (int a6) {
int c7 = a8 + b9;
int b10 = b11 + c12;
}
int c12;
}
0 C1
1
2
a2
b4
c12
b3
m5
a6
3
4
c7
b10
b9
a8
b11 c12
Inheritance
class C1 {
int f2 = 42;
}
class D3 extends C4 {
int g5 = f6;
}
class E7 extends D8 {
int f9 = g10;
int h11 = f12;
}
32
1
C4
C1
4D3
E7
D8
f2 g5 f6
f9
g10
f12
h11
Java Packages
package p3;
class D4 {}
package p1;
class C2 {}
1 p3p1
2
p1 p3
3
D4C2
Java Import
package p1;
imports r2.*;
imports q3.E4;
public class C5 {}
class D6 {}
4
p1
D6C5
3
2r2
1
p1
E4
q3
C# Namespaces and Partial Classes
namespace N1 {
using M2;
partial class C3 {
int f4;
}
}
namespace N5 {
partial class C6 {
int m7() {
return f8;
}
}
}
1
3 6
4 7
8
C3 C6
N1 N5
f4 m7
N1 N5
C3 C6
f8
2 M2 5
More Examples?
Here the audience proposes binding patterns that they
think are not covered by the scope graph framework
(and they may be right?)
Formal Framework
(with labeled scope edges)
Issues with the Reachability Calculus
S R1 R2 SR
SRS
I(R1)
S’S
S’S P
Sx
Sx R
xS
xS D
I(_).p’ < P.p
D < I(_).p’
D < P.p
s.p < s.p’
p < p’
Well formed path: R.P*.I(_)*.D
Disambiguating import paths
Fixed visibility policy
Cyclic Import Paths
Multi-import interpretation
Resolution Calculus with Edge Labels
s the resolution relation for graph G.
collection JNKG is the multiset defined
DG(S)), JR(S)KG = ⇡(RG(S)), and
`G p : S 7 ! xD
i }) where ⇡(A) is
ojecting the identifiers from a set A of
iven a multiset M, 1M (x) denotes the
nes the resolution of a reference to a
as a most specific, well-formed path
n through a sequence of edges. A path
ng the atomic scope transitions in the
of steps:
l, S2) is a direct transition from the
pe S2. This step records the label of
s used.
, yR
, S) requires the resolution of ref-
n with associated scope S to allow a
rrent scope and scope S.
nds with a declaration step D(xD
) that
path is leading to.
ion in the graph from reference xR
i
`G p : xR
i 7 ! xD
i according to
. These rules all implicitly apply to
omit to avoid clutter. The calculus
n in terms of edges in the scope graph,
isible declarations. Here I is the set of
vice needed to avoid “out of thin air”
Well-formed paths
WF(p) , labels(p) 2 E
Visibility ordering on paths
label(s1) < label(s2)
s1 · p1 < s2 · p2
p1 < p2
s · p1 < s · p2
Edges in scope graph
S1
l
S2
I ` E(l, S2) : S1 ! S2
(E)
S1
l
yR
i yR
i /2 I I ` p : yR
i 7 ! yD
j yD
j S2
I ` N(l, yR
i , S2) : S1 ! S2
(N)
Transitive closure
I, S ` [] : A ⇣ A
(I)
B /2 S I ` s : A ! B I, {B} [ S ` p : B ⇣ C
I, S ` s · p : A ⇣ C
(T)
Reachable declarations
I, {S} ` p : S ⇣ S0
WF(p) S0
xD
i
I ` p · D(xD
i ) : S ⇢ xD
i
(R)
Visible declarations
I ` p : S ⇢ xD
i
8j, p0
(I ` p0
: S ⇢ xD
j ) ¬(p0
< p))
I ` p : S 7 ! xD
i
(V )
Reference resolution
xR
i S {xR
i } [ I ` p : S 7 ! xD
j
I ` p : xR
i 7 ! xD
j
(X)
G, |= !N
JN1KG ✓ JN2KG
G, |= N1
⇢
⇠ N2
(C-SUBNAME)
t1 = t2
G, |= t1 ⌘ t2
(C-EQ)
Figure 8. Interpretation of resolution and typing constraints
Resolution paths
s := D(xD
i ) | E(l, S) | N(l, xR
i , S)
p := [] | s | p · p (inductively generated)
[] · p = p · [] = p
(p1 · p2) · p3 = p1 · (p2 · p3)
Well-formed paths
WF(p) , labels(p) 2 E
Visibility ordering on paths
label(s1) < label(s2)
s1 · p1 < s2 · p2
p1 < p2
s · p1 < s · p2
Edges in scope graph
S1
l
S2
I ` E(l, S2) : S1 ! S2
(E)
S1
l
yR
i yR
i /2 I I ` p : yR
i 7 ! yD
j yD
j S2
I ` N(l, yR
i , S2) : S1 ! S2
(N)
Transitive closure
I, S ` [] : A ⇣ A
(I)
B /2 S I ` s : A ! B I, {B} [ S ` p : B ⇣ C
I, S ` s · p : A ⇣ C
(T)
Reachable declarations
I, {S} ` p : S ⇣ S0
WF(p) S0
xD
i
I ` p · D(xD
i ) : S ⇢ xD
i
(R)
Visible declarations
I ` p : S ⇢ xD
i
8j, p0
(I ` p0
: S ⇢ xD
j ) ¬(p0
< p))
I ` p : S 7 ! xD
i
(V )
Reference resolution
xR
S {xR
} [ I ` p : S 7 ! xD
C := CG
| CTy | CRes | C ^ C | True
CG
:= R S | S D | S l
S | D S | S l
R
CRes := R 7! D | D S | !N | N ⇢
⇠ N
CTy := T ⌘ T | D : T
D := | xD
i
R := xR
i
S := & | n
T := ⌧ | c(T, ..., T) with c 2 CT
N := D(S) | R(S) | V(S)
Figure 7. Syntax of constraints
scope graph resolution calculus (described in Section 3.3). Finally,
we apply |= with G set to CG
.
To lift this approach to constraints with variables, we simply
apply a multi-sorted substitution , mapping type variables ⌧ to
ground types, declaration variables to ground declarations and
scope variables & to ground scopes. Thus, our overall definition of
satisfaction for a program p is:
(CG
), |= (CRes
) ^ (CTy
) (⇧)
Visibility Policies
Lexical scope
L := {P} E := P⇤
D < P
Non-transitive imports
L := {P, I} E := P⇤
· I?
D < P, D < I, I < P
Transitive imports
L := {P, TI} E := P⇤
· TI⇤
D < P, D < TI, TI < P
Transitive Includes
L := {P, Inc} E := P⇤
· Inc⇤
D < P, Inc < P
Transitive includes and imports, and non-transitive imports
L := {P, Inc, TI, I} E := P⇤
· (Inc | TI)⇤
· I?
D < P, D < TI, TI < P, Inc < P, D < I, I < P,
Figure 10. Example reachability and visibility policies by instan-
tiation of path well-formedness and visibility.
3.4 Parameterization
R
Envre [
EnvL
re [
EnvD
re [
Envl
re [
I
Seen Imports
hout import tracking.
ficity order on paths is
e visibility policies can
e and specificity order.
module A1 {
module A2 {
def a3 = ...
}
}
import A4
def b5 = a6
Fig. 11. Self im-
port
tion
the
dule
far,
few
!
t A4
ody
?
13
AD
2 :SA2 2 D(SA1 )
AR
4 2 I(Sroot)
AR
4 2 R(Sroot) AD
1 :SA1 2 D(Sroot)
AR
4 7 ! AD
1 :SA1
Sroot ! SA1 (⇤)
Sroot ⇢ AD
2 :SA2
AR
4 2 R(Sroot) Sroot 7 ! AD
2 :SA2
AR
4 7 ! AD
2 :SA2
Fig. 10. Derivation for AR
4 7 ! AD
2 :SA2 in a calculus without import tracking.
The complete definition of well-formed paths and specificity order on paths is
given in Fig. 2. In Section 2.5 we discuss how alternative visibility policies can
be defined by just changing the well-formedness predicate and specificity order.
module A1 {
module A2 {
def a3 = ...
}
}
import A4
def b5 = a6
Seen imports. Consider the example in Fig. 11. Is declaration
a3 reachable in the scope of reference a6? This reduces to the
question whether the import of A4 can resolve to module
A2. Surprisingly, it can, in the calculus as discussed so far,
as shown by the derivation in Fig. 10 (which takes a few
shortcuts). The conclusion of the derivation is that AR
4 7 !
AD
:S . This conclusion is obtained by using the import at A
as shown by the derivation in Fig. 10 (which takes
shortcuts). The conclusion of the derivation is that AR
4
AD
2 :SA2 . This conclusion is obtained by using the import
to conclude at step (*) that Sroot ! SA1
, i.e. that the
of module A1 is reachable! In other words, the import
is used in its own resolution. Intuitively, this is nonsen
To rule out this kind of behavior we extend the cal
to keep track of the set of seen imports I using judgem
of the form I ` p : xR
i 7 ! xD
j . We need to extend all ru
pass the set I, but only the rules for resolution and im
are truly affected:
xR
i 2 R(S) {xR
i } [ I ` p : S 7 ! xD
j
I ` p : xR
i 7 ! xD
j
yR
i 2 I(S1)  I I ` p : yR
i 7 ! yD
j :S2
I ` I(yR
i , yD
j :S2) : S1 ! S2
With this final ingredient, we reach the full calcul
4
def b5 = a6
Fig. 11. Self im-
port
module A1 {
module B2 {
def x3 = 1
}
}
module B4 {
module A5 {
def y6 = 2
}
}
module C7 {
import A8
import B9
def z10 = x11
+ y12
}
Fig. 12. Anoma-
lous resolution
. The conclusion of the derivation is that AR
4 7 !
This conclusion is obtained by using the import at A4
de at step (*) that Sroot ! SA1
, i.e. that the body
A1 is reachable! In other words, the import of A4
its own resolution. Intuitively, this is nonsensical.
e out this kind of behavior we extend the calculus
ack of the set of seen imports I using judgements
m I ` p : xR
i 7 ! xD
j . We need to extend all rules to
et I, but only the rules for resolution and import
affected:
xR
i 2 R(S) {xR
i } [ I ` p : S 7 ! xD
j
I ` p : xR
i 7 ! xD
j
(X)
yR
i 2 I(S1)  I I ` p : yR
i 7 ! yD
j :S2
I ` I(yR
i , yD
j :S2) : S1 ! S2
(I)
this final ingredient, we reach the full calculus in
is not hard to see that the resolution relation is
ded. The only recursive invocation (via the I rule)
ictly larger set I of seen imports (via the X rule); since the set R(G)
Anomaly
4
def b5 = a6
Fig. 11. Self im-
port
module A1 {
module B2 {
def x3 = 1
}
}
module B4 {
module A5 {
def y6 = 2
}
}
module C7 {
import A8
import B9
def z10 = x11
+ y12
}
Fig. 12. Anoma-
lous resolution
R
4 7 !
at A4
body
of A4
sical.
culus
ments
les to
mport
(X)
(I)
us in
on is
rule)
rule); since the set R(G)
2
1
3
1
3
2
Resolution Algorithm
< P
P,
nstan-
R[I](xR
) := let (r, s) = EnvE [{xR
} [ I, ;](Sc(xR
))} in
(
U if r = P and {xD
|xD
2 s} = ;
{xD
|xD
2 s}
Envre [I, S](S) :=
(
(T, ;) if S 2 S or re = ?
Env
L[{D}
re [I, S](S)
EnvL
re [I, S](S) :=
[
l2Max(L)
⇣
Env
{l0
2L|l0
<l}
re [I, S](S) Envl
re [I, S](S)
⌘
EnvD
re [I, S](S) :=
(
(T, ;) if [] /2 re
(T, D(S))
Envl
re [I, S](S) :=
8
><
>:
(P, ;) if S
I
l contains a variable or ISl[I](S) = U
S
S02
⇣
ISl[I](S)[S
I
l
⌘
Env(l 1re)[I, {S} [ S](S0)
ISl
[I](S) :=
(
U if 9yR
2 (S
B
l I) s.t. R[I](yR
) = U
{S0 | yR
2 (S
B
l I) ^ yD
2 R[I](yR
) ^ yD
S0}
Alpha Equivalence
Language-independent 𝜶-equivalence
Program similarity
Equivalence
define ↵-equivalence using scope graphs. Except for the leaves rep
ifiers, two ↵-equivalent programs must have the same abstract
write P ' P’ (pronounced “P and P’ are similar”) when the AS
re equal up to identifiers. To compare two programs we first c
T structures; if these are equal then we compare how identifiers
programs. Since two potentially ↵-equivalent programs are simi
s occur at the same positions. In order to compare the identifiers’
efine equivalence classes of positions of identifiers in a program: p
me equivalence class are declarations of or reference to the same
ract position ¯x identifies the equivalence class corresponding to
x.
n a program P, we write P for the set of positions correspon
s and declarations and PX for P extended with the artificial p
We define the
P
⇠ equivalence relation between elements of PX
if have same AST ignoring identifier names
Language-independent 𝜶-equivalence
Position equivalence
e same equivalence class are declarations of or reference to the same enti
abstract position ¯x identifies the equivalence class corresponding to the fr
ble x.
Given a program P, we write P for the set of positions corresponding
ences and declarations and PX for P extended with the artificial positio
¯x). We define the
P
⇠ equivalence relation between elements of PX as t
xive symmetric and transitive closure of the resolution relation.
nition 7 (Position equivalence).
` p : r i
x 7 ! di0
x
i
P
⇠ i0
i0 P
⇠ i
i
P
⇠ i0
i
P
⇠ i0
i0 P
⇠ i00
i
P
⇠ i00
i
P
⇠ i
his equivalence relation, the class containing the abstract free variable d
ion can not contain any other declaration. So the references in a particu
are either all free or all bound.
mma 6 (Free variable class). The equivalence class of a free variable do
contain any other declaration, i.e. 8 di
x s.t. i
P
⇠ ¯x =) i = ¯x
xi xi'
Program similarity
Equivalence
define ↵-equivalence using scope graphs. Except for the leaves rep
ifiers, two ↵-equivalent programs must have the same abstract
write P ' P’ (pronounced “P and P’ are similar”) when the AS
re equal up to identifiers. To compare two programs we first c
T structures; if these are equal then we compare how identifiers
programs. Since two potentially ↵-equivalent programs are simi
s occur at the same positions. In order to compare the identifiers’
efine equivalence classes of positions of identifiers in a program: p
me equivalence class are declarations of or reference to the same
ract position ¯x identifies the equivalence class corresponding to
x.
n a program P, we write P for the set of positions correspon
s and declarations and PX for P extended with the artificial p
We define the
P
⇠ equivalence relation between elements of PX
if have same AST ignoring identifier names
Language-independent 𝜶-equivalence
Position equivalence
e same equivalence class are declarations of or reference to the same enti
abstract position ¯x identifies the equivalence class corresponding to the fr
ble x.
Given a program P, we write P for the set of positions corresponding
ences and declarations and PX for P extended with the artificial positio
¯x). We define the
P
⇠ equivalence relation between elements of PX as t
xive symmetric and transitive closure of the resolution relation.
nition 7 (Position equivalence).
` p : r i
x 7 ! di0
x
i
P
⇠ i0
i0 P
⇠ i
i
P
⇠ i0
i
P
⇠ i0
i0 P
⇠ i00
i
P
⇠ i00
i
P
⇠ i
his equivalence relation, the class containing the abstract free variable d
ion can not contain any other declaration. So the references in a particu
are either all free or all bound.
mma 6 (Free variable class). The equivalence class of a free variable do
contain any other declaration, i.e. 8 di
x s.t. i
P
⇠ ¯x =) i = ¯x
xi xi'
Program similarity
Equivalence
define ↵-equivalence using scope graphs. Except for the leaves rep
ifiers, two ↵-equivalent programs must have the same abstract
write P ' P’ (pronounced “P and P’ are similar”) when the AS
re equal up to identifiers. To compare two programs we first c
T structures; if these are equal then we compare how identifiers
programs. Since two potentially ↵-equivalent programs are simi
s occur at the same positions. In order to compare the identifiers’
efine equivalence classes of positions of identifiers in a program: p
me equivalence class are declarations of or reference to the same
ract position ¯x identifies the equivalence class corresponding to
x.
n a program P, we write P for the set of positions correspon
s and declarations and PX for P extended with the artificial p
We define the
P
⇠ equivalence relation between elements of PX
if have same AST ignoring identifier names
ed proof is in appendix A.5, we first prove:
r i
x 7 ! d ¯x
x ) =) 8 p di0
x , p ` r i
x 7 ! di0
x =) i0
= ¯x ^ p =
eed by induction on the equivalence relation.
ce classes defined by this relation contain references to
me entity. Given this relation, we can state that two p
f the identifiers at identical positions refer to the same e
he same equivalence class:
(↵-equivalence). Two programs P1 and P2 are ↵-equi
2) when they are similar and have the same ⇠-equivalen
P1
↵
⇡ P2 , P1 ' P2 ^ 8 e e0
, e
P1
⇠ e0
, e
P2
⇠ e0
is an equivalence relation since ' and , are equivalenc(with some further details about free variables)
Alpha equivalence
Preserving ambiguity
25
module A1 {
def x2 := 1
}
module B3 {
def x4 := 2
}
module C5 {
import A6 B7 ;
def y8 := x9
}
module D10 {
import A11 ;
def y12 := x13
}
module E14 {
import B15 ;
def y16 := x17
}
P1
module AA1 {
def z2 := 1
}
module BB3 {
def z4 := 2
}
module C5 {
import AA6 BB7 ;
def s8 := z9
}
module D10 {
import AA11 ;
def u12 := z13
}
module E14 {
import BB15 ;
def v16 := z17
}
P2
module A1 {
def z2 := 1
}
module B3 {
def x4 := 2
}
module C5 {
import A6 B7 ;
def y8 := z9
}
module D10 {
import A11 ;
def y12 := z13
}
module E14 {
import B15 ;
def y16 := x17
}
P3
Fig. 23. ↵-equivalence and duplicate declarationP1
Lemma 6 (Free variable class). The equivalence class of a fr
ot contain any other declaration, i.e. 8 di
x s.t. i
P
⇠ ¯x =) i = ¯x
Proof. Detailed proof is in appendix A.5, we first prove:
8 r i
x, (` > : r i
x 7 ! d ¯x
x ) =) 8 p di0
x , p ` r i
x 7 ! di0
x =) i0
= ¯x
nd then proceed by induction on the equivalence relation.
The equivalence classes defined by this relation contain reference
ions of the same entity. Given this relation, we can state that t
↵-equivalent if the identifiers at identical positions refer to the s
s belong to the same equivalence class:
Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵
oted P1
↵
⇡ P2) when they are similar and have the same ⇠-equi
P1
↵
⇡ P2 , P1 ' P2 ^ 8 e e0
, e
P1
⇠ e0
, e
P2
⇠ e0P2 P2
Lemma 6 (Free variable class). The e
not contain any other declaration, i.e. 8 d
Proof. Detailed proof is in appendix A.5,
8 r i
x, (` > : r i
x 7 ! d ¯x
x ) =) 8 p di0
x , p `
and then proceed by induction on the equ
The equivalence classes defined by this rel
tions of the same entity. Given this relatio
↵-equivalent if the identifiers at identical
is belong to the same equivalence class:
Definition 8 (↵-equivalence). Two pro
noted P1
↵
⇡ P2) when they are similar and
P1
↵
⇡ P2 , P1 ' P2 ^ 8P3
Names and Types
Types from Declaration
def x : int = 6
def x : int = 6
def f = fun (y : int) { x + y }
Static type-checking (or inference) is one obvious client for name resolution
In many cases, we can perform resolution before doing type analysis
Types from Declaration
def x : int = 6
def f = fun (y : int) { x + y }
def f = fun (y : int) { x + y }
def x : int = 6
def f = fun (y : int) { x + y }
Static type-checking (or inference) is one obvious client for name resolution
In many cases, we can perform resolution before doing type analysis
Types from Declaration
def x : int = 6
def f = fun (y : int) { x + y }
def x : int = 6
def f = fun (y : int) { x + y }
Static type-checking (or inference) is one obvious client for name resolution
In many cases, we can perform resolution before doing type analysis
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Type-Dependent Name Resolution
But sometimes we need types before we can do name resolution
record A1 { x1 : int }
record B1 { a1 : A2 ; x2 : bool}
def z1 : B2 = ...
def y1 = z2.x3
def y2 = z3.a2.x4
Our approach: interleave partial name resolution with type resolution
(also using constraints)
See PEPM 2016 paper / talk
Constraint Language
Constraint Language
C := CG
| CTy | CRes | C ^ C | True
CG
:= R S | S D | S l
S | D S | S l
R
CRes := R 7! D | D S | !N | N ⇢
⇠ N
CTy := T ⌘ T | D : T
D := | xD
i
R := xR
i
S := & | n
T := ⌧ | c(T, ..., T) with c 2 CT
N := D(S) | R(S) | V(S)
Figure 7. Syntax of constraints
scope graph resolution calculus (described in Section 3.3). Finally,
we apply |= with G set to CG
.
LMR: Language with Modules and Records
prog = decl⇤
decl = module id {decl⇤
}
| import id
| def bind
| record id {fdecl⇤
}
fdecl = id : ty
ty = Int
| Bool
| id
| ty ! ty
exp = int
| true
| false
| id
| exp exp
| if exp then exp else exp
| fun ( id : ty ) {exp}
| exp exp
| letrec tbind in exp
| new id {fbind⇤
}
| with exp do exp
| exp . id
bind = id = exp
| tbind
tbind = id : ty = exp
fbind = id = exp
Figure 5. Syntax of LMR.
[[ds]]prog :=
[[module xi {ds}]]decl
s :=
[[import xi]]decl
s :=
[[def b]]decl
s :=
[[record xi {fs}]]decl
s :=
[[xi = e]]bind
s :=
[[xi : t = e]]bind
s :=
[[xi:t]]fdecl
sr,sd
:=
[[Int]]ty
s,t :=
[[Bool]]ty
s,t :=
[[t1 ! t2]]ty
s,t :=
[[xi]]ty
s,t :=
[[fun (xi:t1){e}]]exp
s,t :=
Constraints for Declarations
p
[[ds]]prog := !D(s) ^ [[ds]]decl⇤
s
[[module xi {ds}]]decl
s := s xD
i ^ xD
i s0 ^ s0 P
s ^ !D(s0) ^ [[ds]]decl⇤
s0
[[import xi]]decl
s := xR
i s ^ s I
xR
i
[[def b]]decl
s := [[b]]bind
s
[[record xi {fs}]]decl
s := s xD
i ^ xD
i s0 ^ s0 P
s ^ !D(s0) ^ [[fs]]fdecl⇤
s,s0
[[xi = e]]bind
s := s xD
i ^ xD
i : ⌧ ^ [[e]]exp
s,⌧
[[xi : t = e]]bind
s := s xD
i ^ xD
i : ⌧ ^ [[t]]ty
s,⌧ ^ [[e]]exp
s,⌧
[[xi:t]]fdecl
sr,sd
:= sd xD
i ^ xD
i : ⌧ ^ [[t]]ty
sr,⌧
[[Int]]ty
s,t := t ⌘ Int
[[Bool]]ty
s,t := t ⌘ Bool
[[t1 ! t2]]ty
s,t := t ⌘ Fun[⌧1,⌧2] ^ [[t1]]ty
s,⌧1 ^ [[t2]]ty
s,⌧2
[[xi]]ty
:= t ⌘ Rec( ) ^ xR
s ^ xR
7!
Constraints for Expressions
LMR.
be the algo-
R’s concrete
defined by a
by syntactic
ach function
nt and possi-
parameters,
sibly involv-
ables or new
s are defined
ach possible
gory. For ex-
rules, and is
e s in which
the expres-
ected type t
the notation
ms of syntac-
result of ap-
and return-
esulting con-
pty sequence.
1 2 s,t 1 2 1 s,⌧1 2 s,⌧2
[[xi]]ty
s,t := t ⌘ Rec( ) ^ xR
i s ^ xR
i 7!
[[fun (xi:t1){e}]]exp
s,t := t ⌘ Fun[⌧1,⌧2] ^ s0 P
s ^ !D(s0) ^ s0 xD
i
^ xD
i : ⌧1 ^ [[t1]]ty
s,⌧1 ^ [[e]]exp
s0,⌧2
[[letrec bs in e]]exp
s,t := s0 P
s ^ !D(s0) ^ [[bs]]bind
s0 ^ [[e]]exp
s0,t
[[n]]exp
s,t := t ⌘ Int
[[true]]exp
s,t := t ⌘ Bool
[[false]]exp
s,t := t ⌘ Bool
[[e1 e2]]exp
s,t := t ⌘ t3 ^ ⌧1 ⌘ t1 ^ ⌧2 ⌘ t2 ^ [[e1]]exp
s,⌧1 ^ [[e2]]exp
s,⌧2
(where has type t1 ⇥ t2 ! t3)
[[if e1 then e2 else e3]]exp
s,t := ⌧1 ⌘ Bool ^ [[e1]]exp
s,⌧1 ^ [[e2]]exp
s,t ^ [[e3]]exp
s,t
[[xi]]exp
s,t := xR
i s ^ xR
i 7! ^ : t
[[e1 e2]]exp
s,t := ⌧ ⌘ Fun[⌧1,t] ^ [[e1]]exp
s,⌧ ^ [[e2]]exp
s,⌧1
[[e.xi]]exp
s,t := [[e]]exp
s,⌧ ^ ⌧ ⌘ Rec( ) ^ & ^ s0 I
& ^ [[xi]]exp
s0,t
[[with e1 do e2]]exp
s,t := [[e1]]exp
s,⌧ ^ ⌧ ⌘ Rec( ) ^ &
^ s0 P
s ^ s0 I
& ^ [[e2]]exp
s0,t
[[new xi {bs}]]exp
s,t := xR
i s ^ xR
i 7! ^ s0 I
xR
i
^ [[bs]]fbind⇤
s,s0 ^ V(s0) ⇡ R(s0) ^ t ⌘ Rec( )
[[xi = e]]fbind
s,s0 := xR
i s0 ^ xR
i 7! ^ : ⌧ ^ [[e]]exp
s,⌧
Closing
Summary: A Theory of Name Resolution
• Representation: Scope Graphs
- Standardized representation for lexical scoping structure of programs
- Path in scope graph relates reference to declaration
- Basis for syntactic and semantic operations
• Formalism: Name Binding Constraints
- References + Declarations + Scopes + Reachability + Visibility
- Language-specific rules map AST to constraints
• Language-Independent Interpretation
- Resolution calculus: correctness of path with respect to scope graph
- Name resolution algorithm
- Alpha equivalence
- Mapping from graph to tree (to text)
- Refactorings
- And many other applications
Validation
• We have modeled a large set of example binding patterns
- definition before use
- different let binding flavors
- recursive modules
- imports and includes
- qualified names
- class inheritance
- partial classes
• Next goal: fully model some real languages
- Java
- ML
Future Work
• Scope graph semantics for binding specification languages
- starting with NaBL
- or rather: a redesign of NaBL based on scope graphs
• Resolution-sensitive program transformations
- renaming, refactoring, substitution, …
• Dynamic analogs to static scope graphs
- how does scope graph relate to memory at run-time?
• Supporting mechanized language meta-theory
- relating static and dynamic bindings
1 of 167

More Related Content

More from Eelco Visser(20)

Name binding with scope graphs

  • 1. Declare Your Language Part 2: Name Binding with Scope Graphs Eelco Visser Tutorial at POPL 2016 January 18, 2016
  • 2. Static Name Resolution module A { def s = 5 } module B { import A def x = 6 def y = 3 + s def f = fun x { x + y } }
  • 3. Static Name Resolution module module def import def def defA A B 6 y funf x + x y x + 3 s 5s module A { def s = 5 } module B { import A def x = 6 def y = 3 + s def f = fun x { x + y } }
  • 4. Static Name Resolution module module def import def def defA A B 6 y funf x + x y x + 3 s 5s module A { def s = 5 } module B { import A def x = 6 def y = 3 + s def f = fun x { x + y } }
  • 5. Static Name Resolution module module def import def def defA A B 6 y funf x + x y x + 3 s 5s module A { def s = 5 } module B { import A def x = 6 def y = 3 + s def f = fun x { x + y } }
  • 6. Static Name Resolution module module def import def def defA A B 6 y funf x + x y x + 3 s 5s module A { def s = 5 } module B { import A def x = 6 def y = 3 + s def f = fun x { x + y } }
  • 7. Static Name Resolution module module def import def def defA A B 6 y funf x + x y x + 3 s 5s module A { def s = 5 } module B { import A def x = 6 def y = 3 + s def f = fun x { x + y } }
  • 8. Based On … • Declarative Name Binding and Scope Rules - NaBL name binding language - Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, Eelco Visser - SLE 2012 • A Language Designer's Workbench - A one-stop-shop for implementation and verification of language designs - Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Neron, Vlad A. Vergu, Augusto Passalaqua, Gabriël D. P. Konat - Onward 2014 • A Theory of Name Resolution - Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth - ESOP 2015 • A Constraint Language for Static Semantic Analysis based on Scope Graphs - Hendrik van Antwerpen, Pierre Neron, Andrew P. Tolmach, Eelco Visser, Guido Wachsmuth - PEPM 2016
  • 9. Detour: Declare Your Syntax (an analogy for formalizing declarative name binding) Pure and declarative syntax definition: paradise lost and regained Lennart C. L. Kats, Eelco Visser, Guido Wachsmuth Onward 2010
  • 10. Language = Set of Sentences fun (x : Int) { x + 1 } Text is a convenient interface for writing and reading programs
  • 11. Language = Set of Trees Fun AddArgDecl VarRefId Int “1” VarDeclId “x” TXINT “x” Tree is a convenient interface for transforming programs
  • 12. Tree Transformation Tree is a convenient interface for transforming programs Semantic transform translate eval analyze refactor type check Syntactic coloring outline view completion
  • 13. Language = Sentences and Trees parse format different representations convenient for different purposes
  • 14. SDF3 defines Trees and Sentences parse(s) = t where format(t) == s (modulo layout) Expr.Int = INT Expr.Add = <<Expr> + <Expr>> Expr.Mul = <<Expr> * <Expr>> trees (structure) parse (text to tree) format (tree to text) + =>
  • 17. Ambiguity t1 != t2 / format(t1) = format(t2) Add VarRef VarRef “y”“x” Mul Int “3” Add VarRef VarRef “y” “x” Mul Int “3” 3 * x + y
  • 18. Declarative Disambiguation parse filter Disambiguation Filters Klint & Visser (1994), Van den Brand, Scheerder, Vinju, Visser (CC 2002)
  • 19. Priority and Associativity context-free syntax Expr.Int = INT Expr.Add = <<Expr> + <Expr>> {left} Expr.Mul = <<Expr> * <Expr>> {left} context-free priorities Expr.Mul > Expr.Add Recent improvement: safe disambiguation of operator precedence Afroozeh et al. (SLE 2013, Onward 2015) Add VarRef VarRef “y”“x” Mul Int “3” Add VarRef VarRef “y” “x” Mul Int “3” 3 * x + y
  • 20. Declarative Syntax Definition • Representation: (Abstract Syntax) Trees - Standardized representation for structure of programs - Basis for syntactic and semantic operations • Formalism: Syntax Definition - Productions + Constructors + Templates + Disambiguation - Language-specific rules: structure of each language construct • Language-Independent Interpretation - Well-formedness of abstract syntax trees ‣ provides declarative correctness criterion for parsing - Parsing algorithm ‣ No need to understand parsing algorithm ‣ Debugging in terms of representation - Formatting based on layout hints in grammar
  • 21. Declare Your Names A Theory of Name Resolution Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth ESOP 2015
  • 22. Language = Set of Trees Fun AddArgDecl VarRefId Int “1” VarDeclId “x” TXINT “x” Tree is a convenient interface for transforming programs
  • 23. Language = Set of Graphs Fun AddArgDecl VarRefId Int “1” VarDeclId TXINT Edges from references to declarations
  • 24. Fun AddArgDecl VarRefId Int “1” VarDeclId “x” TXINT “x” Language = Set of Graphs Names are placeholders for edges in linear / tree representation
  • 25. Name Resolution is Pervasive • Used in many different language artifacts - compiler - interpreter - semantics - IDE - refactoring • Binding rules encoded in many different and ad-hoc ways - symbol tables - environments - substitutions • No standard approach to formalization - there is no BNF for name binding • No reuse of binding rules between artifacts - how do we know substitution respects binding rules?
  • 26. NaBL Name Binding Language binding rules // variables Param(t, x) : defines Variable x of type t Let(bs, e) : scopes Variable Bind(t, x, e) : defines Variable x of type t Var(x) : refers to Variable x Declarative Name Binding and Scope Rules Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, Eelco Visser SLE 2012 Declarative specification Abstracts from implementation Incremental name resolution But: How to explain it to Coq? What is the semantics of NaBL?
  • 27. NaBL Name Binding Language Declarative Name Binding and Scope Rules Gabriël D. P. Konat, Lennart C. L. Kats, Guido Wachsmuth, Eelco Visser SLE 2012 Especially: What is the semantics of imports? binding rules // classes Class(c, _, _, _) : defines Class c of type ClassT(c) scopes Field, Method, Variable Extends(c) : imports Field, Method from Class c ClassT(c) : refers to Class c New(c) : refers to Class c
  • 28. A Theory of Name Resolution • Representation: Scope Graphs - Standardized representation for lexical scoping structure of programs - Path in scope graph relates reference to declaration - Basis for syntactic and semantic operations - Supports ambiguous / erroneous programs • Formalism: Name Binding Specification - References + Declarations + Scopes + Reachability + Visibility - Language-specific rules: mapping constructs to scope graph • Language-Independent Interpretation - Resolution calculus ‣ Correctness of path with respect to scope graph ‣ Separation of reachability and visibility (disambiguation) - Name resolution algorithm ‣ sound wrt calculus - Transformation ‣ Alpha equivalence, substitution, refactoring, …
  • 29. Outline • Reachability - References, Declarations, Scopes, Resolution Paths - Lexical, Imports, Qualified Names • Visibility - Ambiguous resolutions - Disambiguation: path specificity, path wellformedness • Examples - let, def-before-use, inheritance, packages, imports, namespaces • Formal framework - Generalizing reachability and visibility through labeled scope edges - Resolution algorithm - Alpha equivalence • Names and Types - Type-dependent name resolution • Constraint Language
  • 31. A Calculus for Name Resolution S R1 R2 SR SRS I(R1) S’S S’S P Sx Sx R xS xS D Path in scope graph connects reference to declaration Scopes, References, Declarations, Parents, Imports
  • 32. Simple Scopes def y1 = x2 + 1 def x1 = 5
  • 33. Simple Scopes def y1 = x2 + 1 def x1 = 5
  • 34. Simple Scopes def y1 = x2 + 1 def x1 = 5
  • 35. Simple Scopes S0 def y1 = x2 + 1 def x1 = 5
  • 36. Simple Scopes Scope S0 def y1 = x2 + 1 def x1 = 5 S0 S
  • 37. Simple Scopes Declaration Scope S0 def y1 = x2 + 1 def x1 = 5 y1 x1S0 S x
  • 38. Simple Scopes Reference Declaration Scope S0 def y1 = x2 + 1 def x1 = 5 y1 x1S0x2 S x x
  • 39. Simple Scopes Reference Declaration Scope Reference Step S0 def y1 = x2 + 1 def x1 = 5 Sx Sx R y1 x1S0x2 S x x
  • 40. Simple Scopes Reference Declaration Scope Reference Step S0 def y1 = x2 + 1 def x1 = 5 Sx Sx R R y1 x1S0x2 S x x
  • 41. Simple Scopes Reference Declaration Scope Reference Step Declaration Step S0 def y1 = x2 + 1 def x1 = 5 Sx Sx R xS xS D R y1 x1S0x2 S x x
  • 42. Simple Scopes Reference Declaration Scope Reference Step Declaration Step S0 def y1 = x2 + 1 def x1 = 5 Sx Sx R xS xS D R D y1 x1S0x2 S x x
  • 43. Lexical Scoping def x1 = z2 5 def z1 = fun y1 { x2 + y2 }
  • 44. Lexical Scoping S0 def x1 = z2 5 def z1 = fun y1 { x2 + y2 }
  • 45. Lexical Scoping S1 S0 def x1 = z2 5 def z1 = fun y1 { x2 + y2 }
  • 46. Lexical Scoping S1 S0 def x1 = z2 5 def z1 = fun y1 { x2 + y2 } z1 x1S0z2
  • 47. Lexical Scoping S1 S0 def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S1 y1y2 x2 z1 x1S0z2
  • 48. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S1 y1y2 x2 z1 x1S0z2 S’S
  • 49. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S1 y1y2 x2 z1 x1S0z2 S’S
  • 50. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S1 y1y2 x2 z1 x1S0z2 S’S
  • 51. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S1 y1y2 x2 z1 x1S0z2 R S’S
  • 52. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S1 y1y2 x2 z1 x1S0z2 R D S’S
  • 53. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S1 y1y2 x2 z1 x1S0z2 R S’S
  • 54. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S’S S’S P S1 y1y2 x2 z1 x1S0z2 R S’S Parent Step
  • 55. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S’S S’S P S1 y1y2 x2 z1 x1S0z2 R P S’S Parent Step
  • 56. Lexical Scoping S1 S0 Parent def x1 = z2 5 def z1 = fun y1 { x2 + y2 } S’S S’S P S1 y1y2 x2 z1 x1S0z2 R P D S’S Parent Step
  • 57. Imports S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 }
  • 58. Imports S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } A1 SA z1 B1 SB z2 S0 A2 x1
  • 59. Imports Associated scope S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } R2 SR A1 SA z1 B1 SB z2 S0 A2 x1
  • 60. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1
  • 61. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1
  • 62. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1
  • 63. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1 R
  • 64. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1 R S R1 R2 SR SRS I(R1) Import Step
  • 65. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1 R R S R1 R2 SR SRS I(R1) Import Step
  • 66. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1 R R P S R1 R2 SR SRS I(R1) Import Step
  • 67. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1 R R P D S R1 R2 SR SRS I(R1) Import Step
  • 68. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1 I(A2 )R R P D S R1 R2 SR SRS I(R1) Import Step
  • 69. Imports Associated scope Import S0 SB SA module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } S R1 R2 SR A1 SA z1 B1 SB z2 S0 A2 x1 I(A2 )R R D P D S R1 R2 SR SRS I(R1) Import Step
  • 70. Qualified Names module N1 { def s1 = 5 } module M1 { def x1 = 1 + N2.s2 } S0
  • 71. Qualified Names module N1 { def s1 = 5 } module M1 { def x1 = 1 + N2.s2 } S0
  • 72. Qualified Names module N1 { def s1 = 5 } module M1 { def x1 = 1 + N2.s2 } S0 N1 SN s2 S0 N2 X1 s1
  • 73. Qualified Names module N1 { def s1 = 5 } module M1 { def x1 = 1 + N2.s2 } S0 N1 SN s2 S0 N2 X1 s1
  • 74. Qualified Names module N1 { def s1 = 5 } module M1 { def x1 = 1 + N2.s2 } S0 N1 SN s2 S0 N2 R D X1 s1
  • 75. Qualified Names module N1 { def s1 = 5 } module M1 { def x1 = 1 + N2.s2 } S0 N1 SN s2 S0 N2 R D R I(N2) D X1 s1
  • 76. A Calculus for Name Resolution S R1 R2 SR SRS I(R1) S’S S’S P Sx Sx R xS xS D Reachability of declarations from references through scope graph edges How about ambiguities? References with multiple paths
  • 78. A Calculus for Name Resolution S R1 R2 SR SRS I(R1) S’S S’S P Sx Sx R xS xS D I(_).p’ < P.p D < I(_).p’ D < P.p s.p < s.p’ p < p’ Reachability VisibilityWell formed path: R.P*.I(_)*.D
  • 79. Ambiguous Resolutions S0def x1 = 5 def x2 = 3 def z1 = x3 + 1
  • 80. Ambiguous Resolutions z1 x2 x1S0x3 S0def x1 = 5 def x2 = 3 def z1 = x3 + 1
  • 81. Ambiguous Resolutions z1 x2 x1S0x3 RS0def x1 = 5 def x2 = 3 def z1 = x3 + 1
  • 82. Ambiguous Resolutions z1 x2 x1S0x3 R DS0def x1 = 5 def x2 = 3 def z1 = x3 + 1
  • 83. Ambiguous Resolutions z1 x2 x1S0x3 R D S0def x1 = 5 def x2 = 3 def z1 = x3 + 1
  • 84. Ambiguous Resolutions z1 x2 x1S0x3 R D D S0def x1 = 5 def x2 = 3 def z1 = x3 + 1
  • 85. Ambiguous Resolutions match t with | A x | B x => … z1 x2 x1S0x3 R D D S0def x1 = 5 def x2 = 3 def z1 = x3 + 1
  • 86. Shadowing def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } }
  • 87. Shadowing S0 S1 S2 def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } }
  • 88. Shadowing S0 S1 S2 S1 S2 x1 y1 y2 x2 z1 x3S0z2 def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } }
  • 89. Shadowing S0 S1 S2 S1 S2 x1 y1 y2 x2 z1 x3S0z2 def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } }
  • 90. Shadowing S0 S1 S2 def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } } S1 S2 x1 y1 y2 x2 z1 x3S0z2 R P P D
  • 91. Shadowing S0 S1 S2 def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } } S1 S2 x1 y1 y2 x2 z1 x3S0z2 D P R R P P D
  • 92. Shadowing S0 S1 S2 D < P.p def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } } S1 S2 x1 y1 y2 x2 z1 x3S0z2 D P R R P P D
  • 93. Shadowing S0 S1 S2 D < P.p s.p < s.p’ p < p’ def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } } S1 S2 x1 y1 y2 x2 z1 x3S0z2 D P R R P P D
  • 94. Shadowing S0 S1 S2 D < P.p s.p < s.p’ p < p’ def x3 = z2 5 7 def z1 = fun x1 { fun y1 { x2 + y2 } } S1 S2 x1 y1 y2 x2 z1 x3S0z2 D P R R P P D R.P.D < R.P.P.D
  • 95. Imports shadow Parents S0def z3 = 2 module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } SA SB
  • 96. Imports shadow Parents A1 SA z1 B1 SB z2 S0 A2 x1 z3 S0def z3 = 2 module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } SA SB
  • 97. Imports shadow Parents A1 SA z1 B1 SB z2 S0 A2 x1 z3 S0def z3 = 2 module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } SA SB
  • 98. Imports shadow Parents A1 SA z1 B1 SB z2 S0 A2 x1 I(A2 )R D z3 S0def z3 = 2 module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } SA SB
  • 99. Imports shadow Parents A1 SA z1 B1 SB z2 S0 A2 x1 I(A2 )R D P D z3 R S0def z3 = 2 module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } SA SB
  • 100. Imports shadow Parents I(_).p’ < P.p A1 SA z1 B1 SB z2 S0 A2 x1 I(A2 )R D P D z3 R S0def z3 = 2 module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } SA SB
  • 101. Imports shadow Parents I(_).p’ < P.p R.I(A2).D < R.P.D A1 SA z1 B1 SB z2 S0 A2 x1 I(A2 )R D P D z3 R S0def z3 = 2 module A1 { def z1 = 5 } module B1 { import A2 def x1 = 1 + z2 } SA SB
  • 102. Imports vs. Includes S0def z3 = 2 module A1 { def z1 = 5 } import A2 def x1 = 1 + z2 SA
  • 103. Imports vs. Includes S0def z3 = 2 module A1 { def z1 = 5 } import A2 def x1 = 1 + z2 SA A1 SA z1 z2 S0 A2 x1z3
  • 104. Imports vs. Includes S0def z3 = 2 module A1 { def z1 = 5 } import A2 def x1 = 1 + z2 SA A1 SA z1 z2 S0 A2 x1 R z3 D
  • 105. Imports vs. Includes S0def z3 = 2 module A1 { def z1 = 5 } import A2 def x1 = 1 + z2 SA A1 SA z1 z2 S0 A2 x1 I(A2 ) R D z3 R D
  • 106. Imports vs. Includes S0def z3 = 2 module A1 { def z1 = 5 } import A2 def x1 = 1 + z2 SA A1 SA z1 z2 S0 A2 x1 I(A2 ) R D z3 R D D < I(_).p’
  • 107. Imports vs. Includes S0def z3 = 2 module A1 { def z1 = 5 } import A2 def x1 = 1 + z2 SA A1 SA z1 z2 S0 A2 x1 I(A2 ) R D z3 R D D < I(_).p’ R.D < R.I(A2).D
  • 108. Imports vs. Includes A1 SA z1 z2 S0 A2 x1 I(A2 ) R D z3 R D D < I(_).p’ R.D < R.I(A2).D S0def z3 = 2 module A1 { def z1 = 5 } include A2 def x1 = 1 + z2 SA
  • 109. Imports vs. Includes A1 SA z1 z2 S0 A2 x1 I(A2 ) R D z3 R D D < I(_).p’ R.D < R.I(A2).D S0def z3 = 2 module A1 { def z1 = 5 } include A2 def x1 = 1 + z2 SA X
  • 110. Imports vs. Includes A1 SA z1 z2 S0 A2 x1 I(A2 ) R D z3 R D D < I(_).p’ S0def z3 = 2 module A1 { def z1 = 5 } include A2 def x1 = 1 + z2 SA X
  • 111. Import Parents def s1 = 5 module N1 { } def x1 = 1 + N2.s2 S0 SN
  • 112. Import Parents def s1 = 5 module N1 { } def x1 = 1 + N2.s2 S0 SN
  • 113. Import Parents def s1 = 5 module N1 { } def x1 = 1 + N2.s2 S0 SN N1 SN s2 S0 N2 X1 s1
  • 114. Import Parents def s1 = 5 module N1 { } def x1 = 1 + N2.s2 S0 SN N1 SN s2 S0 N2 X1 s1 R I(N2) D P
  • 115. Import Parents def s1 = 5 module N1 { } def x1 = 1 + N2.s2 S0 SN N1 SN s2 S0 N2 X1 s1 R I(N2) D P
  • 116. Import Parents def s1 = 5 module N1 { } def x1 = 1 + N2.s2 S0 SN Well formed path: R.P*.I(_)*.D N1 SN s2 S0 N2 X1 s1 R I(N2) D P
  • 117. Transitive vs. Non-Transitive module A1 { def z1 = 5 } module B1 { import A2 } module C1 { import B2 def x1 = 1 + z2 } SA SB SC
  • 118. Transitive vs. Non-Transitive module A1 { def z1 = 5 } module B1 { import A2 } module C1 { import B2 def x1 = 1 + z2 } SA SB SC
  • 119. Transitive vs. Non-Transitive ?? module A1 { def z1 = 5 } module B1 { import A2 } module C1 { import B2 def x1 = 1 + z2 } SA SB SC
  • 120. Transitive vs. Non-Transitive A1 SA z1 B1 SB S0 A2 C1 SCz2 x1 B2 ?? module A1 { def z1 = 5 } module B1 { import A2 } module C1 { import B2 def x1 = 1 + z2 } SA SB SC
  • 121. Transitive vs. Non-Transitive A1 SA z1 B1 SB S0 A2 I(A2 ) D C1 SCz2 I(B2 ) R x1 B2 ?? module A1 { def z1 = 5 } module B1 { import A2 } module C1 { import B2 def x1 = 1 + z2 } SA SB SC
  • 122. Transitive vs. Non-Transitive With transitive imports, a well formed path is R.P*.I(_)*.D With non-transitive imports, a well formed path is R.P*.I(_)? .D A1 SA z1 B1 SB S0 A2 I(A2 ) D C1 SCz2 I(B2 ) R x1 B2 ?? module A1 { def z1 = 5 } module B1 { import A2 } module C1 { import B2 def x1 = 1 + z2 } SA SB SC
  • 123. A Calculus for Name Resolution S R1 R2 SR SRS I(R1) S’S S’S P Sx Sx R xS xS D I(_).p’ < P.p D < I(_).p’ D < P.p s.p < s.p’ p < p’ Reachability VisibilityWell formed path: R.P*.I(_)*.D
  • 125. Let Bindings 1 2 b2a1 c3 a4 b6 c12a10 b11 c5 b9 a7 c8 def a1 = 0 def b2 = 1 def c3 = 2 letpar a4 = c5 b6 = a7 c8 = b9 in a10+b11+c12 1 b2a1 c3 a4 b6 c12a10 b11 c5 b9 a7 c8 2 def a1 = 0 def b2 = 1 def c3 = 2 letrec a4 = c5 b6 = a7 c8 = b9 in a10+b11+c12 1 b2a1 c3 a4 b6 c12a10 b11 c5 b9 a7 c8 2 4 3 def a1 = 0 def b2 = 1 def c3 = 2 let a4 = c5 b6 = a7 c8 = b9 in a10+b11+c12
  • 126. Definition before Use / Use before Definition class C1 { int a2 = b3; int b4; void m5 (int a6) { int c7 = a8 + b9; int b10 = b11 + c12; } int c12; } 0 C1 1 2 a2 b4 c12 b3 m5 a6 3 4 c7 b10 b9 a8 b11 c12
  • 127. Inheritance class C1 { int f2 = 42; } class D3 extends C4 { int g5 = f6; } class E7 extends D8 { int f9 = g10; int h11 = f12; } 32 1 C4 C1 4D3 E7 D8 f2 g5 f6 f9 g10 f12 h11
  • 128. Java Packages package p3; class D4 {} package p1; class C2 {} 1 p3p1 2 p1 p3 3 D4C2
  • 129. Java Import package p1; imports r2.*; imports q3.E4; public class C5 {} class D6 {} 4 p1 D6C5 3 2r2 1 p1 E4 q3
  • 130. C# Namespaces and Partial Classes namespace N1 { using M2; partial class C3 { int f4; } } namespace N5 { partial class C6 { int m7() { return f8; } } } 1 3 6 4 7 8 C3 C6 N1 N5 f4 m7 N1 N5 C3 C6 f8 2 M2 5
  • 131. More Examples? Here the audience proposes binding patterns that they think are not covered by the scope graph framework (and they may be right?)
  • 133. Issues with the Reachability Calculus S R1 R2 SR SRS I(R1) S’S S’S P Sx Sx R xS xS D I(_).p’ < P.p D < I(_).p’ D < P.p s.p < s.p’ p < p’ Well formed path: R.P*.I(_)*.D Disambiguating import paths Fixed visibility policy Cyclic Import Paths Multi-import interpretation
  • 134. Resolution Calculus with Edge Labels s the resolution relation for graph G. collection JNKG is the multiset defined DG(S)), JR(S)KG = ⇡(RG(S)), and `G p : S 7 ! xD i }) where ⇡(A) is ojecting the identifiers from a set A of iven a multiset M, 1M (x) denotes the nes the resolution of a reference to a as a most specific, well-formed path n through a sequence of edges. A path ng the atomic scope transitions in the of steps: l, S2) is a direct transition from the pe S2. This step records the label of s used. , yR , S) requires the resolution of ref- n with associated scope S to allow a rrent scope and scope S. nds with a declaration step D(xD ) that path is leading to. ion in the graph from reference xR i `G p : xR i 7 ! xD i according to . These rules all implicitly apply to omit to avoid clutter. The calculus n in terms of edges in the scope graph, isible declarations. Here I is the set of vice needed to avoid “out of thin air” Well-formed paths WF(p) , labels(p) 2 E Visibility ordering on paths label(s1) < label(s2) s1 · p1 < s2 · p2 p1 < p2 s · p1 < s · p2 Edges in scope graph S1 l S2 I ` E(l, S2) : S1 ! S2 (E) S1 l yR i yR i /2 I I ` p : yR i 7 ! yD j yD j S2 I ` N(l, yR i , S2) : S1 ! S2 (N) Transitive closure I, S ` [] : A ⇣ A (I) B /2 S I ` s : A ! B I, {B} [ S ` p : B ⇣ C I, S ` s · p : A ⇣ C (T) Reachable declarations I, {S} ` p : S ⇣ S0 WF(p) S0 xD i I ` p · D(xD i ) : S ⇢ xD i (R) Visible declarations I ` p : S ⇢ xD i 8j, p0 (I ` p0 : S ⇢ xD j ) ¬(p0 < p)) I ` p : S 7 ! xD i (V ) Reference resolution xR i S {xR i } [ I ` p : S 7 ! xD j I ` p : xR i 7 ! xD j (X) G, |= !N JN1KG ✓ JN2KG G, |= N1 ⇢ ⇠ N2 (C-SUBNAME) t1 = t2 G, |= t1 ⌘ t2 (C-EQ) Figure 8. Interpretation of resolution and typing constraints Resolution paths s := D(xD i ) | E(l, S) | N(l, xR i , S) p := [] | s | p · p (inductively generated) [] · p = p · [] = p (p1 · p2) · p3 = p1 · (p2 · p3) Well-formed paths WF(p) , labels(p) 2 E Visibility ordering on paths label(s1) < label(s2) s1 · p1 < s2 · p2 p1 < p2 s · p1 < s · p2 Edges in scope graph S1 l S2 I ` E(l, S2) : S1 ! S2 (E) S1 l yR i yR i /2 I I ` p : yR i 7 ! yD j yD j S2 I ` N(l, yR i , S2) : S1 ! S2 (N) Transitive closure I, S ` [] : A ⇣ A (I) B /2 S I ` s : A ! B I, {B} [ S ` p : B ⇣ C I, S ` s · p : A ⇣ C (T) Reachable declarations I, {S} ` p : S ⇣ S0 WF(p) S0 xD i I ` p · D(xD i ) : S ⇢ xD i (R) Visible declarations I ` p : S ⇢ xD i 8j, p0 (I ` p0 : S ⇢ xD j ) ¬(p0 < p)) I ` p : S 7 ! xD i (V ) Reference resolution xR S {xR } [ I ` p : S 7 ! xD C := CG | CTy | CRes | C ^ C | True CG := R S | S D | S l S | D S | S l R CRes := R 7! D | D S | !N | N ⇢ ⇠ N CTy := T ⌘ T | D : T D := | xD i R := xR i S := & | n T := ⌧ | c(T, ..., T) with c 2 CT N := D(S) | R(S) | V(S) Figure 7. Syntax of constraints scope graph resolution calculus (described in Section 3.3). Finally, we apply |= with G set to CG . To lift this approach to constraints with variables, we simply apply a multi-sorted substitution , mapping type variables ⌧ to ground types, declaration variables to ground declarations and scope variables & to ground scopes. Thus, our overall definition of satisfaction for a program p is: (CG ), |= (CRes ) ^ (CTy ) (⇧)
  • 135. Visibility Policies Lexical scope L := {P} E := P⇤ D < P Non-transitive imports L := {P, I} E := P⇤ · I? D < P, D < I, I < P Transitive imports L := {P, TI} E := P⇤ · TI⇤ D < P, D < TI, TI < P Transitive Includes L := {P, Inc} E := P⇤ · Inc⇤ D < P, Inc < P Transitive includes and imports, and non-transitive imports L := {P, Inc, TI, I} E := P⇤ · (Inc | TI)⇤ · I? D < P, D < TI, TI < P, Inc < P, D < I, I < P, Figure 10. Example reachability and visibility policies by instan- tiation of path well-formedness and visibility. 3.4 Parameterization R Envre [ EnvL re [ EnvD re [ Envl re [ I
  • 136. Seen Imports hout import tracking. ficity order on paths is e visibility policies can e and specificity order. module A1 { module A2 { def a3 = ... } } import A4 def b5 = a6 Fig. 11. Self im- port tion the dule far, few ! t A4 ody ? 13 AD 2 :SA2 2 D(SA1 ) AR 4 2 I(Sroot) AR 4 2 R(Sroot) AD 1 :SA1 2 D(Sroot) AR 4 7 ! AD 1 :SA1 Sroot ! SA1 (⇤) Sroot ⇢ AD 2 :SA2 AR 4 2 R(Sroot) Sroot 7 ! AD 2 :SA2 AR 4 7 ! AD 2 :SA2 Fig. 10. Derivation for AR 4 7 ! AD 2 :SA2 in a calculus without import tracking. The complete definition of well-formed paths and specificity order on paths is given in Fig. 2. In Section 2.5 we discuss how alternative visibility policies can be defined by just changing the well-formedness predicate and specificity order. module A1 { module A2 { def a3 = ... } } import A4 def b5 = a6 Seen imports. Consider the example in Fig. 11. Is declaration a3 reachable in the scope of reference a6? This reduces to the question whether the import of A4 can resolve to module A2. Surprisingly, it can, in the calculus as discussed so far, as shown by the derivation in Fig. 10 (which takes a few shortcuts). The conclusion of the derivation is that AR 4 7 ! AD :S . This conclusion is obtained by using the import at A as shown by the derivation in Fig. 10 (which takes shortcuts). The conclusion of the derivation is that AR 4 AD 2 :SA2 . This conclusion is obtained by using the import to conclude at step (*) that Sroot ! SA1 , i.e. that the of module A1 is reachable! In other words, the import is used in its own resolution. Intuitively, this is nonsen To rule out this kind of behavior we extend the cal to keep track of the set of seen imports I using judgem of the form I ` p : xR i 7 ! xD j . We need to extend all ru pass the set I, but only the rules for resolution and im are truly affected: xR i 2 R(S) {xR i } [ I ` p : S 7 ! xD j I ` p : xR i 7 ! xD j yR i 2 I(S1) I I ` p : yR i 7 ! yD j :S2 I ` I(yR i , yD j :S2) : S1 ! S2 With this final ingredient, we reach the full calcul
  • 137. 4 def b5 = a6 Fig. 11. Self im- port module A1 { module B2 { def x3 = 1 } } module B4 { module A5 { def y6 = 2 } } module C7 { import A8 import B9 def z10 = x11 + y12 } Fig. 12. Anoma- lous resolution . The conclusion of the derivation is that AR 4 7 ! This conclusion is obtained by using the import at A4 de at step (*) that Sroot ! SA1 , i.e. that the body A1 is reachable! In other words, the import of A4 its own resolution. Intuitively, this is nonsensical. e out this kind of behavior we extend the calculus ack of the set of seen imports I using judgements m I ` p : xR i 7 ! xD j . We need to extend all rules to et I, but only the rules for resolution and import affected: xR i 2 R(S) {xR i } [ I ` p : S 7 ! xD j I ` p : xR i 7 ! xD j (X) yR i 2 I(S1) I I ` p : yR i 7 ! yD j :S2 I ` I(yR i , yD j :S2) : S1 ! S2 (I) this final ingredient, we reach the full calculus in is not hard to see that the resolution relation is ded. The only recursive invocation (via the I rule) ictly larger set I of seen imports (via the X rule); since the set R(G) Anomaly 4 def b5 = a6 Fig. 11. Self im- port module A1 { module B2 { def x3 = 1 } } module B4 { module A5 { def y6 = 2 } } module C7 { import A8 import B9 def z10 = x11 + y12 } Fig. 12. Anoma- lous resolution R 4 7 ! at A4 body of A4 sical. culus ments les to mport (X) (I) us in on is rule) rule); since the set R(G) 2 1 3 1 3 2
  • 138. Resolution Algorithm < P P, nstan- R[I](xR ) := let (r, s) = EnvE [{xR } [ I, ;](Sc(xR ))} in ( U if r = P and {xD |xD 2 s} = ; {xD |xD 2 s} Envre [I, S](S) := ( (T, ;) if S 2 S or re = ? Env L[{D} re [I, S](S) EnvL re [I, S](S) := [ l2Max(L) ⇣ Env {l0 2L|l0 <l} re [I, S](S) Envl re [I, S](S) ⌘ EnvD re [I, S](S) := ( (T, ;) if [] /2 re (T, D(S)) Envl re [I, S](S) := 8 >< >: (P, ;) if S I l contains a variable or ISl[I](S) = U S S02 ⇣ ISl[I](S)[S I l ⌘ Env(l 1re)[I, {S} [ S](S0) ISl [I](S) := ( U if 9yR 2 (S B l I) s.t. R[I](yR ) = U {S0 | yR 2 (S B l I) ^ yD 2 R[I](yR ) ^ yD S0}
  • 140. Language-independent 𝜶-equivalence Program similarity Equivalence define ↵-equivalence using scope graphs. Except for the leaves rep ifiers, two ↵-equivalent programs must have the same abstract write P ' P’ (pronounced “P and P’ are similar”) when the AS re equal up to identifiers. To compare two programs we first c T structures; if these are equal then we compare how identifiers programs. Since two potentially ↵-equivalent programs are simi s occur at the same positions. In order to compare the identifiers’ efine equivalence classes of positions of identifiers in a program: p me equivalence class are declarations of or reference to the same ract position ¯x identifies the equivalence class corresponding to x. n a program P, we write P for the set of positions correspon s and declarations and PX for P extended with the artificial p We define the P ⇠ equivalence relation between elements of PX if have same AST ignoring identifier names
  • 141. Language-independent 𝜶-equivalence Position equivalence e same equivalence class are declarations of or reference to the same enti abstract position ¯x identifies the equivalence class corresponding to the fr ble x. Given a program P, we write P for the set of positions corresponding ences and declarations and PX for P extended with the artificial positio ¯x). We define the P ⇠ equivalence relation between elements of PX as t xive symmetric and transitive closure of the resolution relation. nition 7 (Position equivalence). ` p : r i x 7 ! di0 x i P ⇠ i0 i0 P ⇠ i i P ⇠ i0 i P ⇠ i0 i0 P ⇠ i00 i P ⇠ i00 i P ⇠ i his equivalence relation, the class containing the abstract free variable d ion can not contain any other declaration. So the references in a particu are either all free or all bound. mma 6 (Free variable class). The equivalence class of a free variable do contain any other declaration, i.e. 8 di x s.t. i P ⇠ ¯x =) i = ¯x xi xi' Program similarity Equivalence define ↵-equivalence using scope graphs. Except for the leaves rep ifiers, two ↵-equivalent programs must have the same abstract write P ' P’ (pronounced “P and P’ are similar”) when the AS re equal up to identifiers. To compare two programs we first c T structures; if these are equal then we compare how identifiers programs. Since two potentially ↵-equivalent programs are simi s occur at the same positions. In order to compare the identifiers’ efine equivalence classes of positions of identifiers in a program: p me equivalence class are declarations of or reference to the same ract position ¯x identifies the equivalence class corresponding to x. n a program P, we write P for the set of positions correspon s and declarations and PX for P extended with the artificial p We define the P ⇠ equivalence relation between elements of PX if have same AST ignoring identifier names
  • 142. Language-independent 𝜶-equivalence Position equivalence e same equivalence class are declarations of or reference to the same enti abstract position ¯x identifies the equivalence class corresponding to the fr ble x. Given a program P, we write P for the set of positions corresponding ences and declarations and PX for P extended with the artificial positio ¯x). We define the P ⇠ equivalence relation between elements of PX as t xive symmetric and transitive closure of the resolution relation. nition 7 (Position equivalence). ` p : r i x 7 ! di0 x i P ⇠ i0 i0 P ⇠ i i P ⇠ i0 i P ⇠ i0 i0 P ⇠ i00 i P ⇠ i00 i P ⇠ i his equivalence relation, the class containing the abstract free variable d ion can not contain any other declaration. So the references in a particu are either all free or all bound. mma 6 (Free variable class). The equivalence class of a free variable do contain any other declaration, i.e. 8 di x s.t. i P ⇠ ¯x =) i = ¯x xi xi' Program similarity Equivalence define ↵-equivalence using scope graphs. Except for the leaves rep ifiers, two ↵-equivalent programs must have the same abstract write P ' P’ (pronounced “P and P’ are similar”) when the AS re equal up to identifiers. To compare two programs we first c T structures; if these are equal then we compare how identifiers programs. Since two potentially ↵-equivalent programs are simi s occur at the same positions. In order to compare the identifiers’ efine equivalence classes of positions of identifiers in a program: p me equivalence class are declarations of or reference to the same ract position ¯x identifies the equivalence class corresponding to x. n a program P, we write P for the set of positions correspon s and declarations and PX for P extended with the artificial p We define the P ⇠ equivalence relation between elements of PX if have same AST ignoring identifier names ed proof is in appendix A.5, we first prove: r i x 7 ! d ¯x x ) =) 8 p di0 x , p ` r i x 7 ! di0 x =) i0 = ¯x ^ p = eed by induction on the equivalence relation. ce classes defined by this relation contain references to me entity. Given this relation, we can state that two p f the identifiers at identical positions refer to the same e he same equivalence class: (↵-equivalence). Two programs P1 and P2 are ↵-equi 2) when they are similar and have the same ⇠-equivalen P1 ↵ ⇡ P2 , P1 ' P2 ^ 8 e e0 , e P1 ⇠ e0 , e P2 ⇠ e0 is an equivalence relation since ' and , are equivalenc(with some further details about free variables) Alpha equivalence
  • 143. Preserving ambiguity 25 module A1 { def x2 := 1 } module B3 { def x4 := 2 } module C5 { import A6 B7 ; def y8 := x9 } module D10 { import A11 ; def y12 := x13 } module E14 { import B15 ; def y16 := x17 } P1 module AA1 { def z2 := 1 } module BB3 { def z4 := 2 } module C5 { import AA6 BB7 ; def s8 := z9 } module D10 { import AA11 ; def u12 := z13 } module E14 { import BB15 ; def v16 := z17 } P2 module A1 { def z2 := 1 } module B3 { def x4 := 2 } module C5 { import A6 B7 ; def y8 := z9 } module D10 { import A11 ; def y12 := z13 } module E14 { import B15 ; def y16 := x17 } P3 Fig. 23. ↵-equivalence and duplicate declarationP1 Lemma 6 (Free variable class). The equivalence class of a fr ot contain any other declaration, i.e. 8 di x s.t. i P ⇠ ¯x =) i = ¯x Proof. Detailed proof is in appendix A.5, we first prove: 8 r i x, (` > : r i x 7 ! d ¯x x ) =) 8 p di0 x , p ` r i x 7 ! di0 x =) i0 = ¯x nd then proceed by induction on the equivalence relation. The equivalence classes defined by this relation contain reference ions of the same entity. Given this relation, we can state that t ↵-equivalent if the identifiers at identical positions refer to the s s belong to the same equivalence class: Definition 8 (↵-equivalence). Two programs P1 and P2 are ↵ oted P1 ↵ ⇡ P2) when they are similar and have the same ⇠-equi P1 ↵ ⇡ P2 , P1 ' P2 ^ 8 e e0 , e P1 ⇠ e0 , e P2 ⇠ e0P2 P2 Lemma 6 (Free variable class). The e not contain any other declaration, i.e. 8 d Proof. Detailed proof is in appendix A.5, 8 r i x, (` > : r i x 7 ! d ¯x x ) =) 8 p di0 x , p ` and then proceed by induction on the equ The equivalence classes defined by this rel tions of the same entity. Given this relatio ↵-equivalent if the identifiers at identical is belong to the same equivalence class: Definition 8 (↵-equivalence). Two pro noted P1 ↵ ⇡ P2) when they are similar and P1 ↵ ⇡ P2 , P1 ' P2 ^ 8P3
  • 145. Types from Declaration def x : int = 6 def x : int = 6 def f = fun (y : int) { x + y } Static type-checking (or inference) is one obvious client for name resolution In many cases, we can perform resolution before doing type analysis
  • 146. Types from Declaration def x : int = 6 def f = fun (y : int) { x + y } def f = fun (y : int) { x + y } def x : int = 6 def f = fun (y : int) { x + y } Static type-checking (or inference) is one obvious client for name resolution In many cases, we can perform resolution before doing type analysis
  • 147. Types from Declaration def x : int = 6 def f = fun (y : int) { x + y } def x : int = 6 def f = fun (y : int) { x + y } Static type-checking (or inference) is one obvious client for name resolution In many cases, we can perform resolution before doing type analysis
  • 148. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 149. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 150. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 151. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 152. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 153. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 154. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 155. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 156. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 157. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4
  • 158. Type-Dependent Name Resolution But sometimes we need types before we can do name resolution record A1 { x1 : int } record B1 { a1 : A2 ; x2 : bool} def z1 : B2 = ... def y1 = z2.x3 def y2 = z3.a2.x4 Our approach: interleave partial name resolution with type resolution (also using constraints) See PEPM 2016 paper / talk
  • 160. Constraint Language C := CG | CTy | CRes | C ^ C | True CG := R S | S D | S l S | D S | S l R CRes := R 7! D | D S | !N | N ⇢ ⇠ N CTy := T ⌘ T | D : T D := | xD i R := xR i S := & | n T := ⌧ | c(T, ..., T) with c 2 CT N := D(S) | R(S) | V(S) Figure 7. Syntax of constraints scope graph resolution calculus (described in Section 3.3). Finally, we apply |= with G set to CG .
  • 161. LMR: Language with Modules and Records prog = decl⇤ decl = module id {decl⇤ } | import id | def bind | record id {fdecl⇤ } fdecl = id : ty ty = Int | Bool | id | ty ! ty exp = int | true | false | id | exp exp | if exp then exp else exp | fun ( id : ty ) {exp} | exp exp | letrec tbind in exp | new id {fbind⇤ } | with exp do exp | exp . id bind = id = exp | tbind tbind = id : ty = exp fbind = id = exp Figure 5. Syntax of LMR. [[ds]]prog := [[module xi {ds}]]decl s := [[import xi]]decl s := [[def b]]decl s := [[record xi {fs}]]decl s := [[xi = e]]bind s := [[xi : t = e]]bind s := [[xi:t]]fdecl sr,sd := [[Int]]ty s,t := [[Bool]]ty s,t := [[t1 ! t2]]ty s,t := [[xi]]ty s,t := [[fun (xi:t1){e}]]exp s,t :=
  • 162. Constraints for Declarations p [[ds]]prog := !D(s) ^ [[ds]]decl⇤ s [[module xi {ds}]]decl s := s xD i ^ xD i s0 ^ s0 P s ^ !D(s0) ^ [[ds]]decl⇤ s0 [[import xi]]decl s := xR i s ^ s I xR i [[def b]]decl s := [[b]]bind s [[record xi {fs}]]decl s := s xD i ^ xD i s0 ^ s0 P s ^ !D(s0) ^ [[fs]]fdecl⇤ s,s0 [[xi = e]]bind s := s xD i ^ xD i : ⌧ ^ [[e]]exp s,⌧ [[xi : t = e]]bind s := s xD i ^ xD i : ⌧ ^ [[t]]ty s,⌧ ^ [[e]]exp s,⌧ [[xi:t]]fdecl sr,sd := sd xD i ^ xD i : ⌧ ^ [[t]]ty sr,⌧ [[Int]]ty s,t := t ⌘ Int [[Bool]]ty s,t := t ⌘ Bool [[t1 ! t2]]ty s,t := t ⌘ Fun[⌧1,⌧2] ^ [[t1]]ty s,⌧1 ^ [[t2]]ty s,⌧2 [[xi]]ty := t ⌘ Rec( ) ^ xR s ^ xR 7!
  • 163. Constraints for Expressions LMR. be the algo- R’s concrete defined by a by syntactic ach function nt and possi- parameters, sibly involv- ables or new s are defined ach possible gory. For ex- rules, and is e s in which the expres- ected type t the notation ms of syntac- result of ap- and return- esulting con- pty sequence. 1 2 s,t 1 2 1 s,⌧1 2 s,⌧2 [[xi]]ty s,t := t ⌘ Rec( ) ^ xR i s ^ xR i 7! [[fun (xi:t1){e}]]exp s,t := t ⌘ Fun[⌧1,⌧2] ^ s0 P s ^ !D(s0) ^ s0 xD i ^ xD i : ⌧1 ^ [[t1]]ty s,⌧1 ^ [[e]]exp s0,⌧2 [[letrec bs in e]]exp s,t := s0 P s ^ !D(s0) ^ [[bs]]bind s0 ^ [[e]]exp s0,t [[n]]exp s,t := t ⌘ Int [[true]]exp s,t := t ⌘ Bool [[false]]exp s,t := t ⌘ Bool [[e1 e2]]exp s,t := t ⌘ t3 ^ ⌧1 ⌘ t1 ^ ⌧2 ⌘ t2 ^ [[e1]]exp s,⌧1 ^ [[e2]]exp s,⌧2 (where has type t1 ⇥ t2 ! t3) [[if e1 then e2 else e3]]exp s,t := ⌧1 ⌘ Bool ^ [[e1]]exp s,⌧1 ^ [[e2]]exp s,t ^ [[e3]]exp s,t [[xi]]exp s,t := xR i s ^ xR i 7! ^ : t [[e1 e2]]exp s,t := ⌧ ⌘ Fun[⌧1,t] ^ [[e1]]exp s,⌧ ^ [[e2]]exp s,⌧1 [[e.xi]]exp s,t := [[e]]exp s,⌧ ^ ⌧ ⌘ Rec( ) ^ & ^ s0 I & ^ [[xi]]exp s0,t [[with e1 do e2]]exp s,t := [[e1]]exp s,⌧ ^ ⌧ ⌘ Rec( ) ^ & ^ s0 P s ^ s0 I & ^ [[e2]]exp s0,t [[new xi {bs}]]exp s,t := xR i s ^ xR i 7! ^ s0 I xR i ^ [[bs]]fbind⇤ s,s0 ^ V(s0) ⇡ R(s0) ^ t ⌘ Rec( ) [[xi = e]]fbind s,s0 := xR i s0 ^ xR i 7! ^ : ⌧ ^ [[e]]exp s,⌧
  • 165. Summary: A Theory of Name Resolution • Representation: Scope Graphs - Standardized representation for lexical scoping structure of programs - Path in scope graph relates reference to declaration - Basis for syntactic and semantic operations • Formalism: Name Binding Constraints - References + Declarations + Scopes + Reachability + Visibility - Language-specific rules map AST to constraints • Language-Independent Interpretation - Resolution calculus: correctness of path with respect to scope graph - Name resolution algorithm - Alpha equivalence - Mapping from graph to tree (to text) - Refactorings - And many other applications
  • 166. Validation • We have modeled a large set of example binding patterns - definition before use - different let binding flavors - recursive modules - imports and includes - qualified names - class inheritance - partial classes • Next goal: fully model some real languages - Java - ML
  • 167. Future Work • Scope graph semantics for binding specification languages - starting with NaBL - or rather: a redesign of NaBL based on scope graphs • Resolution-sensitive program transformations - renaming, refactoring, substitution, … • Dynamic analogs to static scope graphs - how does scope graph relate to memory at run-time? • Supporting mechanized language meta-theory - relating static and dynamic bindings