Sustainable IT for Energy Management: Approaches, Challenges, and Trends


Published on

An invited talk to the Galway-Mayo Institute of Technology on the current state of the art in Sustainable IT for energy management, the challenges, and the emerging trends.

Published in: Technology
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Sustainable IT for Energy Management: Approaches, Challenges, and Trends

  1. 1. Digital Enterprise Research Institute Sustainable IT for Energy Management: Approaches, Challenges and Trends Invited Talk to Galway-Mayo Institute of Technology 13th March 2013 Edward Curry, Green and Sustainable IT© Copyright 2011 Digital Enterprise Research Institute. All rightsreserved. Enabling Networked Knowledge
  2. 2. The  Environment  is  on  Everyone’s  Agenda   2    
  3. 3. ICT’s  Mass  Produc:on  Carbon  Cost  ICT  Accounts  for   Approximately...   2%   …of  Global  CO2  Emissions.   3     Source  Gartner  
  4. 4. McKinsey  2020  Report  ICTs  could  deliver  approximately  7.8  GtCO2  of  emissions  savings  in  2020,  represenFng  a  15%  of  emissions  cut  in  2020  and  600  billion  ($946.5  billion)  of  cost  savings.  ICT  can  provide  business  soluFons  that  can  alleviate  at  least  five  Fmes  the  GHG  footprint  of  ICT  itself  
  5. 5. Sustainable  IT  •  Align  all  IT  processes  and   pracFces  with  the  core   Reduce IT (1.0) principles  of  sustainability,   2%   which  are  to  reduce,  reuse,   and  recycle;  and  •  Find  innovaFve  ways  to  use   IT  in  business  processes  to   98%   deliver  sustainability   benefits  across  the   enterprise  and  beyond.   5     Improve Efficiency (2.0)
  6. 6. The  Two  Faces  of  Sustainable  IT    IT  For  Green   Smart  Buildings   Data  Collec:on  and   Collabora:on   De-­‐materializa:on   Repor:ng   Technologies   Energy   e-­‐Procurement   e-­‐Waste   Management   Green  for  IT   Power   Data  Centre  Design   Virtualiza:on,  Cloud   Management,  PC   and  Opera:on   Compu:ng   Refresh  Cycle  
  7. 7. Sustainability  1.0  Case  Study    
  8. 8. Intel  IT  Vital  Stats  2012   100,100  Intel  employees   150  sites,  62  countries     6,400  IT  employees   56  global  sites     87  Data  Centers   ~75,000  servers;     458,694  square  feet     >110,000  Devices   >90K  PCs  (80%+  mobile),   >20,000  Handhelds  
  9. 9. Energy Management Software Employee-led Reduced Activities Business Travel Employee Telepresence Bonus Energy Rooms Efficiency at LED Intel IT “LEED Gold”Light Fixtures building design Small Office IT High efficiency Footprint Data Centers Solar Panels
  10. 10. Understanding  the  IT  Footprint  
  11. 11. Understanding  the  IT  Footprint  
  12. 12. Data  Centres:  An  Inefficient  Truth   Data  Center   Server   Processor   45  Wabs  supplied   to  IT  equipment   14  Wabs  supplied   Peripheral Slots 20% to  CPU   80%   20% Idle U:lised  55%   45%   PSU 15% 32%  Power,  Cooling   IT  Load   Processor    &  Ligh:ng   Drives 5% 11.2  Wabs  used  for   100  Wabs   Up  to  88.8%  of  the  power  consumed  by  a   computa:on   Supplied   data  centre  is  used  before  computa8on   *  Source:  EPA  Report  to  Congress  on  Server  and  Data  Center  Energy  Efficiency,  August  2007   13    
  13. 13. Server  Refresh  •  Moore’s  Law:  Doubling  of  chip  performance   every  18  months  •  Energy  consumed  by  the  chip  does  not  double  •  Moore’s  Law  drives  conFnuous  chip-­‐level  energy   efficiency    
  14. 14. Telepresence  and  Video  Conferencing  •  435,000  employee  travel  hours  •  $73  million  in  travel  expenses  •  65,000  metric  tons  of  CO2  emissions  
  15. 15. Impacts  of  Sustainable  IT  @  Intel  •  Total  cost  savings  of  over  $114  million  •  Avoidance  of  more  than  87,500  metric  tons  of   CO2  emissions  •  Intel  was  named  to  Computerworld’s  2010  and   2011  lists  of  “Top  Green-­‐IT  OrganizaFons”  
  16. 16. Sustainable  IT  •  Align  all  IT  processes  and   pracFces  with  the  core   Reduce IT (1.0) principles  of  sustainability,   2%   which  are  to  reduce,  reuse,   and  recycle;  and  •  Find  innovaFve  ways  to  use   IT  in  business  processes  to   98%   deliver  sustainability   benefits  across  the   enterprise  and  beyond.   17     Improve Efficiency (2.0)
  17. 17. Opportunity  •  2010  MIT  Sloan  /  IBM  report  on  AnalyFcs   –  Embedding  business  insight  into  day-­‐to-­‐day   operaFons  is  criFcal  to  success     –  Single  greatest  opportunity  and  challenge  for  the   data-­‐driven  enterprise      
  18. 18. Energy  InformaFcs   Energy  +  InformaFon  <  Energy    •  Analyzing,  designing,  and  implemenFng   informaFon  systems  to  increase  energy  efficiency  •  Adding  informaFon  to  the  energy  equaFon  to   reduce  energy  consumpFon    R.  T.  Watson,  M.-­‐C.  Boudreau,  and  A.  J.  Chen,  InformaFon  Systems  and  Environmentally  Sustainable  Development:   Energy  InformaFcs  and  New  DirecFons  for  the  IS  Community,€  MIS  Quarterly,  vol.  34,  no.  1,  pp.  23-­‐38,  2010.   19    
  19. 19. The  Smart  City  
  20. 20.  A  Smart  City  driver  of  change  will  be  Data.
  21. 21. ChallengeDigital Enterprise Research Institute n  2010 MIT Sloan / IBM report on Analytics ¨  Embedding business insight into day-to-day operations is critical to success ¨  Single greatest opportunity and challenge for the data-driven enterprise n  2010 survey of 600+ CIOs & IT Managers ¨  Paucity of sustainability information (i.e energy) ¨  Lost opportunity to leverage information to improve sustainability ¨  Significant challenges ahead Enabling Networked Knowledge
  22. 22. Case Study: DERI BuildingDigital Enterprise Research Institute n  DERI Building ¨  No BMS or BEMS ¨  160 person Office space ¨  Café ¨  Data centre ¨  3 Kitchens ¨  80 person Conference room ¨  4 Meeting rooms ¨  Computing museum ¨  Sensor Lab Enabling Networked Knowledge 24
  23. 23. Energy Management System BrochureDigital Enterprise Research Institute Enabling Networked Knowledge
  24. 24. SensorsDigital Enterprise Research Institute Enabling Networked Knowledge 26 of 26
  25. 25. Energy Management SoftwareDigital Enterprise Research Institute Enabling Networked Knowledge
  26. 26. New Engineering Building at NUI GalwayDigital Enterprise Research Institute Cost  -­‐  €  40,000,000       Enabling Networked Knowledge 28  
  27. 27. Research Motivation A Real-World ExampleDigital Enterprise Research Institute Cost  -­‐  €  40,000,000       AirCon  8:30-­‐11:00  &  15:00-­‐16:00  Mon  to  Fri       CO2  levels   Occupancy  Parern   Time Monday Tuesday Wednesday Thursday Friday ASHRAE     08:00-­‐09:00 62.1-­‐2010   09:00-­‐10:00 237 237 200 237 10:00-­‐11:00 237 237 237 200 11:00-­‐12:00 237 180 180 145 237 12:00-­‐13:00 237 200 237 200 149 13:00-­‐14:00 145 14:00-­‐15:00 221 237 145 140 15:00-­‐16:00 221 120 160 140 16:00-­‐17:00 149 250 160 17:00-­‐18:00 200 160 Enabling Networked Knowledge 29  
  28. 28. Enterprise Energy ManagementDigital Enterprise Research Institute Energy Management Systems within an Enterprise will need to support four key requirements Enabling Networked Knowledge
  29. 29. Holistic Energy ConsumptionDigital Enterprise Research Institute FaciliFes   Data  Centre   Business  Travel     Office  IT   Daily  Commute     Holis:c   Energy   Management   Enabling Networked Knowledge
  30. 30. Business Context of Energy ConsumptionDigital Enterprise Research Institute Energy Finance Resource Allocation Human Asset Mgmt Resources Enabling Networked Knowledge
  31. 31. Multi-Level Energy AnalysisDigital Enterprise Research Institute CIO Strategic Analysis CEO Example KPI: •  CIO needs high-level Energy used by business function power global IT department usage •  CSO real-time carbon Helpdesk emissions CSO Example KPI: PUE of the Tactical Analysis Data Center in Dublin •  Manager needs energy usage of business Maintenance Personnel processes, business line or Example KPI: group kWhs used by server Operational Analysis •  Technician needs equipment power usage Building •  Low-level monitoring Sensors, events Data Center Enabling Networked Knowledge 33 of XYZ
  32. 32. Energy Situational AwarenessDigital Enterprise Research Institute n  Help users to: ¨  Understand energy data ¨  Make appropriate energy saving decisions ¨  Support energy performance objectives and other business performance objectives –  human resources (i.e. occupancy comfort) –  enterprise resource planning (i.e. room utilization). Enabling Networked Knowledge
  33. 33. Key ChallengesDigital Enterprise Research Institute n  Technology and Data Interoperability ¨  Data scattered among different information systems ¨  Multiple incompatible technologies make it difficult to use n  Interpreting Dynamic and Static Data ¨  Sensors, ERP, BMS, assets databases, … ¨  Need to proactively identify efficiency opportunities n  Empowering Actions ¨  Understanding of direct and indirect impacts of activities ¨  Embedding impacts within business processes Enabling Networked Knowledge 35
  34. 34. Future Trends for Energy ManagementDigital Enterprise Research Institute Everything is Connected and.. …Data is Shared on the Web with Linked Data Enabling networked knowledge
  35. 35. The Web of DataDigital Enterprise Research Institute Enabling networked knowledge
  36. 36. The Web of Data…Digital Enterprise Research Institute 2008 2007 2008 2010 2009 2008 2009 2008 Enabling Networked Knowledge 38 38
  37. 37. Linked Open Data cloud - domainsDigital Enterprise Research Institute BestBuy Facebook US government UK government Media User-generated Government Publications BBC New York Times Cross-domain Geo Life sciences LinkedGeoData Over 300 open data sets with more than 35 billion facts, interlinked by 500 million typed links. Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. Enabling Networked Knowledge 39
  38. 38. CoAP = HTTP for sensorsDigital Enterprise Research Institute Enabling Networked Knowledge
  39. 39. CoAP ApplicationsDigital Enterprise Research Institute 41 Enabling Networked Knowledge
  40. 40. CoAP ExampleDigital Enterprise Research Institute www.deri.ien  Accessing sensors from we browser using HTTP-CoAP proxying – SPITFIRE Smart Service Proxy (SSP) Enabling Networked Knowledge
  41. 41. Energy IntelligenceDigital Enterprise Research Institute n  Linked Dataspace for Energy Intelligence ¨  Uses Linked Data and CoAP to manage energy ¨  Transforms raw data into meaningful energy information ¨  Enables effective strategic, tactical, and operational decision-making for energy mgmt ¨  Provides energy consumption of business activities so they can be understood and optimized Enabling Networked Knowledge
  42. 42. Linked dataspace for Energy IntelligenceDigital Enterprise Research Institute Organisation-level Business Process Personal-level Linked  dataspace  for   Energy  Intelligence   Office IT Corporate Building Logistics Data Center Enabling Networked Knowledge 44    
  43. 43. Linked dataspace forDigital Enterprise Research Institute Energy Intelligence Energy Saving Applications Applications n  Decision Support Energy Analysis Systems Model Energy and Sustainability Dashboards Situation Awareness Apps n  Energy Awareness Semantic Event Processing Complex Events n  Natural Language Interface Services Support Entity Complex Event Management Data Catalog Provenance Search & Query Processing n  Service Engine n  Collaborative Data Mgmt. n  Interlinked Cloud of Energy Linked Data Data n  Resource Description Adapter Adapter Adapter Adapter Adapter Framework (RDF) Sources n  Semantic Sensor Network Ontology (SSN) n  CoAP = Constrained Application Protocol Enabling Networked Knowledge
  44. 44. Energy Saving ApplicationsDigital Enterprise Research Institute Enterprise Energy Smart Buildings Green Cloud Observatory Computing Enabling Networked Knowledge Office IT Energy Mgmt. Personal Energy Mgmt.
  45. 45. Building EnergyDigital Enterprise Research Institute 1.  Data from Enterprise Linked Data Cloud 2.  Sensor Data 3.  Building Energy Situation Awareness Enabling Networked Knowledge 47 of 26
  46. 46. Linking Building DataDigital Enterprise Research Institute W3C SSN XG Ontology + DERI Rooms + CoAP Enabling Networked Knowledge
  47. 47. iEnergy – PersonalDigital Enterprise Research Institute Enabling Networked Knowledge
  48. 48. Example of Savings AchievedDigital Enterprise Research Institute Enabling Networked Knowledge
  49. 49. Selected ReferencesDigital Enterprise Research Institute Sustainability Use Cases n  Curry, E., et al . (2011). An Entity-Centric Approach To Green Information Systems. 19th European Conference on Information Systems (ECIS 2011). n  Curry, E., & Donnellan, B. (2012). Green and Sustainable Informatics. In, Harnessing Green IT: Principles and Practices. John Wiley & Sons n  Curry, E. et al. An Environmental Chargeback for Data Center and Cloud Computing Consumers, in First International Workshop on Energy-Efficient Data Centers, 2012. n  Curry, E. et al, Building Optimisation using Scenario Modeling and Linked Data, in 1st Workshop Linked Data in Architecture and Construction 2012 n  Curry E. et al, Enterprise Energy Management using a Linked dataspace for Energy Intelligence. In: The Second IFIP Conference on Sustainable Internet and ICT for Sustainability (SustainIT) 2012. Enabling Networked Knowledge
  50. 50. Selected ReferencesDigital Enterprise Research Institute Information Management n  Hasan, S. et al. (2011). Toward Situation Awareness for the Semantic Sensor Web: Complex Event Processing with Dynamic Linked Data Enrichment. 4th International Workshop on Semantic Sensor Networks n  Hasan, S. et al, Approximate Semantic Matching of Heterogeneous Events, in 6th ACM International Conference on Distributed Event-Based Systems n  Curry E. (2012) System of Systems Information Interoperability using a Linked Dataspace In: IEEE 7th International Conference on System of Systems Engineering (SOSE 2012). IT Management n  Curry, E. et al. Developing an Sustainable IT Capability: Lessons From Intel’s Journey, MIS Quarterly Executive, vol. 11, no. 2, pp. 61-74, 2012. n  Donnellan B. et al, (2011) A Capability Maturity Framework for Sustainable Information and Communication Technology. IEEE IT Professional 13(1). n  Curry E, et al, (2012) Sustainable IT: Challenges, Postures, and Outcomes, IEEE Computer 15(11) Enabling Networked Knowledge