Successfully reported this slideshow.                                   You’ve finished this document.
Upcoming SlideShare
penerapan grafik parabola
Next

of                                   Upcoming SlideShare
penerapan grafik parabola
Next

Share

warta ilmu === pak say sing ganteng

See all

### Related Audiobooks

#### Free with a 30 day trial from Scribd

See all
• Be the first to like this

1. 1. • XO Y y = - (x + 2)2
2. 2. GRAFIK FUNGSI KUADRAT • XO Y disusun oleh: Al. Krismanto, M.Sc.
3. 3. x y Titik X Y –3 9 (–3,9) –2 4 (–2,4) –1 1 (–1,1) 0 0 (0,0) 1 1 (1,1) 2 4 (2,4) 3 9 (3,9) O (– 3,9) (– 2,4) (– 1,1) (0,0) (1, 1) (2, 4) (3, 9) y = x2 Grafiknya sebagai berikut (klik untuk terus) KLIK untuk terus1. y = f(x); f: x→ f(x) = x2, {x|–3<x<3} y = f(x); f: x→ f(x) = ax2 + bx + c KLIK untuk terus KLIK untuk terus Dari puncak: x bergeser +1, y bertambah 1, x bergeser + 2, y bertambah 4 Susunlah tabel pasangan (x, y) untuk – 3 < x < 3, dengan x dan y bilangan bulat, kemudian tentukan letak titiknya yang bersesuaian pada bidang koordinat KLIK untuk terus Persamaan grafik: y = x2 , {x|– 3<x<3}
4. 4. GRAFIK FUNGSI KUADRAT Persamaan grafik y = (x–p)2 x y Titik –3 9 (–3,9) –2 4 (–2,4) –1 1 (–1,1) 0 0 (0,0) 1 1 (1,1) 2 4 (2,4) 3 9 (3,9) X Y O (– 1,1) (0,0) (1, 1) (2, 4) (3, 9) y = x2 x y Titik –2 9 (–2,9) –1 4 (–1,4) 0 1 (0, 1) 1 0 (1, 0) 2 1 (2,1) 3 4 (3,4) 4 9 (4,9) y=(x–1)2 Perhatikan, bandingkan (– 3,9) (– 2,4) (0,1) (1,0) (2, 1) (3, 4) (4, 9)(– 2,9) (– 1,4) Bagaimana cara memperoleh grafik y = (x–1)2 dari grafik y = x2 ? Coba perhatikan! (klik untuk terus) Grafiknya sebagai berikut (klik untuk terus)
5. 5. Grafik y = (x – 3)2 Grafik y = (x – 1)2 Grafik y = (x – 2)2 Grafik y = (x – p) 2 X Y O(0,0) Perhatikan kembali grafik y = x2 y = x2 Grafik yang persamaan- nya y = (x – 1)2 diperoleh dari grafik y = x2 digeser 1 satuan ke kanan. Grafik yang persamaan- nya y = (x – 2)2 diperoleh dari grafik y = x2 digeser 2 satuan ke kanan. Grafik yang persamaan- nya y = (x – 3)2 diperoleh dari grafik y = x2 digeser 3 satuan ke kanan. Secara umum: Grafik y = (x–p)2 diperoleh dengan menggeser grafik y = x2 sebesar p satuan ke kanan. Grafik yang persamaan- nya y = (x + 3)2 diperoleh dari grafik y = x2 digeser – 3 satuan ke kanan atau 3 ke kiri. Grafik y = (x + 3)2
6. 6. GRAFIK FUNGSI KUADRAT Bagaimana cara memperoleh grafik y = x2 + 2 dari grafik y = x2 ? Coba perhatikan! y = f(x); f: x→ f(x) = x2 + q x y Titik X Y –3 9 (–3,9) –2 4 (–2,4) –1 1 (–1,1) 0 0 (0,0) 1 1 (1,1) 2 4 (2,4) 3 9 (3,9) O (– 2,4) (– 1,1) (0,0) (1, 1) (2, 4) (3, 9) y = x2 x y Titik –3 11 (–3,11) –2 6 (–2,6) –1 3 (–1,3) 0 2 (0,2) 1 3 (1,3) 2 6 (2,6) 3 11 (3,11) y = x2 +2 (– 3,11) (– 2, 6) (– 1, 3) (0,2) (1, 3) (2, 6) (3, 11) (– 3,9)
7. 7. Grafik y = x2 + 3 Grafik y = x2 + 1 Grafik y = x2 + 2 X Y O(0,0) Perhatikan kembali grafik y = x2 y = x2 Grafik y = x2 + 1 dapat diperoleh dari grafik y = x2 dengan menggeser 1 satuan ke atas Grafik y = x2 + q Telah diperoleh: Grafik y = x2 + 2 dapat diperoleh dari grafik y = x2 dengan menggeser 2 satuan ke atas Grafik y = x2 + 3 dapat diperoleh dari grafik y = x2 dengan menggeser 3 satuan ke atas Dari langkah di atas: Grafik y = x2 + q dapat diperoleh dari grafik y = x2 dengan menggeser q satuan ke atas (q positif: ke atas q negatif: ke bawah) Grafik y = x2 – 2 Grafik y = x2 – 2 dapat diperoleh dari grafik y = x2 dengan menggeser – 2 satuan ke atas atau menggeser 2 satuan ke bawah
8. 8. Titik baliknya (3, 2) Grafik y = (x – 3)2 +2 Grafik y = (x – 3)2 X Y O(0,0) Perhatikan kembali grafik y = x2 y = x2 Berdasar langkah sebelumnya maka untuk memperoleh grafiknya dari grafik y = x2 : Geserlah grafik y = x2 ke kanan sejauh p = 3 satuan dan ke atas sejauh q = 2 satuan Grafik y = a(x – p) 2 + q Grafik y = (x–3)2 +2
9. 9. GRAFIK FUNGSI KUADRAT Dengan cara bagaimanakah grafik: y =– x2 diperoleh dari grafik: y = x2 ? y = f(x); f: x→ f(x) = –x2 x y Titik –3 9 (–3,9) –2 4 (–2,4) –1 1 (–1,1) 0 0 (0,0) 1 1 (1,1) 2 4 (2,4) 3 9 (3,9) y = x2 (– 3, –9) X Y O (– 3,9) (– 2,4) (– 1,1) (0,0) (1, 1) (2, 4) (3, 9) (– 2, –4) (– 1,1) (1, –1) (2, –4) (3, –9) x y Titik –3 –9 (–3,–9) –2 –4 (–2,–4) –1 –1 (–1,–1) 0 0 (0,0) 1 –1 (1, –1) 2 –4 (2, –4) 3 –9 (3, –9) y = – x2
10. 10. GRAFIK FUNGSI KUADRAT Persamaan grafik y = –(x–p)2 x y Titik 0 0 (0,0) 1 –1 (1,–1) 3 –9 (3,–9) X Y O(0,0) (1, – 1) (2, – 4) (3, -9) y = – x2 x y Titik –2 –9 (–2,–9) –1 –4 (–1,–4) 0 –1 (0,–1) 1 0 (1, 0) 2 –1 (2,–1) 3 –4 (3,–4) 4 – 9 (4, –9) y= –(x–1)2 Perhatikan, bandingkan (2, – 1)(– 1,1) (– 3,9) (– 2,–4) (0, – 1) (1,0) (3, – 4) (4, – 9)(– 2, – 9) (– 1,– 4) Bagaimana cara memperoleh grafik y = – (x–1)2 dari grafik y = x2 ? Coba perhatikan! (klik untuk terus) Grafiknya sebagai berikut (klik untuk terus) 2 –4 (2,–4) –3 –9 (–3,–9) –2 –4 (–2,–4) –1 –1 (–1,–1)
11. 11. Grafik y = – (x – 3)2 +2 Grafik y = –(x – 3)2 X Y O(0,0) Perhatikan kembali grafik y = – x2 Berdasar langkah sebelumnya maka untuk memperoleh grafiknya dari grafik y = x2 : Geserlah grafik y = x2 ke kanan sejauh p = 3 satuan dan ke atas sejauh q = 2 satuan Grafik y = – a(x – p) 2 + q Titik baliknya (3, 2) y = x2 Grafik y =–(x–3)2 +2 33333 22222
12. 12. LATIHAN Berikut ini disajikan soal Latihan bentuk pilihan ganda 5 pilihan A, B, C, D, dan E. GUNAKAN POINTER BUKAN UNTUK MEMILIH, DAN HARUS TEPAT PADA JAWABAN PILIHAN JIKA ANDA LANGSUNG KLIK, ATAU TIDAK MEMILIH DIANGGAP PILIHAN ANDA SALAH
13. 13. XO Y 1. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = x2 + 3x + 2 C. y = −(x − 3)2 + 2 D. y = (x − 3)2 + 2 E. y = (x − 2)2 + 3 A. y = − x2 + 2x + 3
14. 14. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 1. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = x2 + 3x + 2 C. y = −(x − 3)2 + 2 D. y = (x − 3)2 + 2 E. y = (x − 2)2 + 3 A. y = − x2 + 2x + 3
15. 15. XO Y Sayang, jawab Anda salah lagi. Grafik diperoleh dari grafik y = x2 Digeser ke kanan 3 satuan y = (x − 3)2 Digeser ke atas 2 satuan Perhatikan cara menyelesaikannya D. y = (x − 3)2 + 2 Dari puncak, x bergeser + 1, y bertambah 1, x bergeser + 2, y bertambah 4. Berarti: y = (x − 3)2
16. 16. XO Y 2. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = − x2 + 3x − 2 C. y = (x + 2)2 − 3 D. y = (x − 3)2 + 2 E. y = −(x + 2)2 + 3 A. y = x2 + 2x − 3
17. 17. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 2. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = − x2 + 3x − 2 C. y = (x + 2)2 − 3 D. y = (x − 3)2 + 2 E. y = −(x + 2)2 + 3 A. y = x2 + 2x − 3
18. 18. • XO Y Sayang, jawab Anda salah lagi. Grafik diperoleh dari grafik y = x2 Digeser ke kiri 2 satuan y = (x + 2)2 Digeser ke bawah 3 satuan Perhatikan cara menyelesaikannya y = (x + 2)2 − 3 Dari puncak, x bergeser + 1, y bertambah 1, x bergeser + 2, y bertambah 4. Berarti: y = (x + 2)2
19. 19. XO Y 3. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = −(x − 8)2 + 2 C. y = −(x + 2)2 + 8 D. y = (x + 2)2 + 8 E. y = (x − 2)2 + 8 A. y = −(x + 8)2 + 2
20. 20. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 3. Persamaan grafik fungsi kuadrat di samping adalah .... B. y = −(x − 8)2 + 2 C. y = −(x + 2)2 + 8 D. y = (x + 2)2 + 8 E. y = (x − 2)2 + 8 A. y = −(x + 8)2 + 2
21. 21. • XO Y Sayang, jawab Anda salah lagi. Grafik diperoleh dari grafik y = x2 Digeser ke kiri 2 satuan y = − (x + 2)2 Digeser ke atas 8 satuan Perhatikan cara menyelesaikannya y = −(x + 2)2 + 8 Dari puncak, x bergeser + 1, y berkurang 1, x bergeser + 2, y berkurang 4. Berarti: y = − (x + 2)2 y = − (x + 2)2 + 8
22. 22. XO Y 4. Persamaan grafik fungsi kuadrat di samping adalah .... A. y = 0,5x2 + 4x + 1 B. y = 0,5(x − 4)2 − 1 C. y = −0,5(x − 4)2 − 1 D. y = 2(x − 4)2 + 1 E. y = − 2(x − 4)2 − 1
23. 23. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 4. Persamaan grafik fungsi kuadrat di samping adalah .... A. y = 0,5x2 + 4x + 1 B. y = 0,5(x − 4)2 − 1 C. y = −0,5(x − 4)2 − 1 D. y = 2(x − 4)2 + 1 E. y = − 2(x − 4)2 − 1
24. 24. XO Y Sayang, jawab Anda salah lagi. 2 1Grafik diperoleh dari grafik y = x2 Digeser ke kiri 4 satuan Perhatikan cara menyelesaikannya Dari puncak, x bergeser + 2, y bertambah 4, x bergeser + 4, y bertambah 8. Berarti: Digeser ke bawah 1 satuan C. y = (x − 4)2 − 12 1 y = (x − 4)2 2 1 y = (x − 4)2 2 1 atau y = 0,5 (x − 4)2 − 1
25. 25. XO Y 5. Persamaan grafik fungsi kuadrat di samping adalah .... A. y = 0,5x2 + x + 8 B. y = 0,5x2 + 2x + 8 C. y = −x2 + 4x + 12 D. y = −0,5x2 + 2x + 6 E. y = −2x2 − 2x + 6
26. 26. Sayang, masih belum benar. Kerjakan sekali lagi! XO Y 5. Persamaan grafik fungsi kuadrat di samping adalah .... A. y = 0,5x2 + x + 8 B. y = 0,5x2 + 2x + 8 C. y = −x2 + 4x + 12 D. y = −0,5x2 + 2x + 6 E. y = −2x2 − 2x + 6
27. 27. XO Y y = − (x2 − 4x + 4) + 82 1 Sayang, jawab Anda salah lagi. 2 1Grafik diperoleh dari grafik y= − x2 Digeser ke kanan 2 satuan Perhatikan cara menyelesaikannya Dari puncak, x bergeser + 2, y berkurang 4, x bergeser + 4, y berkurang 8. Berarti: Digeser ke atas 8 satuan y = − (x −2)2 2 1 y = − (x − 2)2 + 82 1 y = − x2 + 2x + 62 1 atau y = −0,5x2 + 2x + 6
28. 28. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
29. 29. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
30. 30. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
31. 31. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA
32. 32. KLIK DI SINI UNTUK KE NOMOR BERIKUTNYA

Total views

284

On Slideshare

0

From embeds

0

Number of embeds

10

3

Shares

0