Mc farland


Published on

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

Mc farland

  1. 1.   Jason  J.  McFarland   Arctic  Vegetation  Ecology  692     M.S.  Biology  Candidate  Alaska  Cooperative  Fish  and  Wildlife  Research  Unit   Department  of  Biology  and  Wildlife     University  of  Alaska  Fairbanks  
  2. 2. -­‐  Background  information,  project  introduction  -­‐  Description  of  study  area  and  site  -­‐  Research  objectives  and  preliminary  results  -­‐  Conclusions          
  3. 3. -­‐  Worked  for  BLM  in  2009  and  2010  and  worked  on  Arctic  Coastal  Plain,  North  Slope  -­‐  Visited  many  different  watersheds  and  observed  many  fish,  but  disproportionate  amount  of  aquatic  food  resources  (i.e.  aquatic  invertebrates)  -­‐  Where  is  food  coming  from?      Could  surrounding  riparian  vegetation  be  providing  terrestrial   subsidies  (i.e.  terrestrial  invertebrates)  to  stream  fish???  
  4. 4.  Jason  J.  McFarland  M.S.  Biology  Thesis      
  5. 5. -­‐  Threats  to  ecological  processes  in  aquatic  ecosystems  in  the  Arctic  -­‐  Small,  lower  order  streams  are  potentially  most  susceptible  climate  change  and  land  use  impacts    -­‐  Beaded  streams  are  important  habitat  for  fish  and  other  biota    -­‐  Project  focuses  on  terrestrial/aquatic  linkages  in  a  beaded  stream  -­‐  Baseline  study  to  better  understand  basic  ecological  processes  in  order  to  evaluate  future  ecological  changes  
  6. 6. Camp Black Gold Spike
  7. 7. 438 D. A. WALKER AND K. R. EVERETT EcologicalMonographs Vol. 61, No. 4 156? 152? 1BO A4048? aBarrow Crea  Creek   O b d ( 100 km Study  Site   Beaufort Sea F v :. fM ~~~..... ... 1......... .. . ,g ,. 70 .. ...............moisthmi g.... . . . . . . . . . . . . . ........ . . . . . ., t wit PrudhoePBayhtundra ty- /i Atkasoeo ___ FOO > ;~adoesest 70 A S A L L A ........~ ) t-4 ~~Lowland with loess B wet minerotrophic tundra Lowlandloess with wet 680 ~~~~~~~~~~~~~~~tundra B>. 8arrow.. BeaufortSea F- with wet andmoist acidic 68?L =01 1 m m ~~~~~~~~~~~~~Upland loess and deposits ~~~~~~~~~~~~~~~~~mainersitsohi caysdi FIG. 1. Extent of minerotrophictundra satll e o r O n L t A L a Upland loess deposits T I C p.CF 0 T t (Carter .-.p 1988) withmoistmixed > / ~ ~~ _ ~ -8 R 0 ? 0 acidicandminerotrophictundra ,Marine silts andclays I withwetacidictundra FIG. 1. Extent of minerotrophic and acidic tundras on the Alaskan North Slope based on Carter (1988) and AVHRR satellite-derived imagery. Upland loess occurs in the Arctic Foothills. Lowland loess occurs on the Arctic Coastal Plain.(Walker,  Dinformation is from study sitesK.R.  1991)   extensive area of modem tundra ecological .A.,  and  Everett,   un- The most loess deposition
  8. 8. Aquatic  Sedge   (Carex  aquatilis,  Eriophorum  angustifolium)   Willows   (Salix  pulchra)   Mixed (willows/sedge)
  9. 9. NEWS RELEASEU.S. ARMY CORPS OF ENGINEERS BUILDING STRONG ®For Immediate Release: Contact:Dec. 19, 2011 Pat Richardson, 907-753-2520 U.S. Army Corps of Engineers issues permit for CD-5ANCHORAGE – Today, the U.S. Army Corps of Engineers, Alaska District issued a permit underSection 404 of the Clean Water Act to ConocoPhillips Alaska, Inc. for the CD-5 Alpine SatelliteDevelopment Project.This decision culminates nearly a year-long review process that included an in-depth analysis ofengineering alternatives along with an examination of supplemental technical information provided bystate and federal agencies. In a detailed 134-page record of decision, the Corps is requiringConocoPhillips to use the least environmentally damaging practicable alternative as required by law.“Today’s decision is entirely consistent with the mission of the Corps of Engineers’ Regulatory Program,which is to protect the Nations aquatic resources while allowing reasonable development,” said KevinMorgan, Regulatory Chief for the Alaska District. “It’s indicative of a program that is fair, flexible andbalanced."The CD-5 permit authorizes construction of a drill pad, six-mile long access road, four bridge crossings,two valve pads with access roads, and new pipeline support structures. It also includes 22 specialconditions intended to minimize the impact to the environment within the Arctic Coastal Plain. Inaddition, ConocoPhillips agreed to pay mitigation fees to the Conservation Fund to compensate forunavoidable losses to aquatic resources.During the review process, the Corps evaluated four practicable alternative proposals that includedboth above and below ground pipelines. Additional information provided by ConocoPhillips, combinedwith opinions from agencies responsible for pipeline oversight in Alaska, documented that an aboveground pipeline, in this particular situation, presented a lesser risk of damage to the aquatic ecosystem.“The clarifying information we reviewed and conditions agreed to by ConocoPhillips cleared the way forus to issue this permit,” said Col. Reinhard Koenig, Commander of the Alaska District. It’s testament tothe Corps’ permit evaluation process and our ability to make balanced and independent decisions.”“The ConocoPhillips proposal will provide year-round quick and effective pipeline monitoring, leakdetection, and spill response,” Koenig said.The Record of Decision is available on the Alaska District’s website at: U.S. ARMY CORPS OF ENGINEERS – ALASKA DISTRICT P.O. Box 6898, Elmendorf AFB, AK 99506-0898
  10. 10. Map  Credit:    Matthew  Whitman  (BLM)  
  11. 11. 1)  Measure  riparian  invertebrate  subsidies  (i.e.,  fish  prey)  to  streams  from   different  riparian  plant  communities,  in  Crea  Creek,  NPRA.  2)  Determine  how  riparian  vegetation  influences  Arctic  grayling  foraging.  
  12. 12. Hypothesis:    The  riparian  community  composition  of  invertebrates  differs   between  willow,  sedge    and  mixed  willow/sedge  dominated  communities    -­‐  Deployed  floating  pan  traps  and  to  quantify  invertebrates  landing  or  falling  into  the  stream  from  riparian  vegetation  -­‐  Pan  traps  were  located  in  the  2  largest  patches  of    each  dominant  vegetation  type  (willows,  sedge,  mixed    willow/sedge)  and  sampled  in  June,  July,  and  August    -­‐  Contrasted  species  richness,  abundance,  and  biomass  of    invertebrates  falling  into  stream      
  13. 13. No Data No Data-­‐  Invertebrates  falling  into  or  landing  in  Crea  Creek  varied  by  plant  type  and  season.      -­‐  Flies,  beetles,  aphids  and  caddisflies  were  the  most  common  taxa.  
  14. 14. -­‐  Used  aerial  photography  overlaid  with  grid  cells  to  estimate  relative  composition  of  riparian  vegetation  communities  in  10  equal  sized  stream  reaches    
  15. 15. 9 10 8 7 3 4 5 6 1 2 Crea  Creek  Total  Community  Composition:  Sedge-­‐52%,  Willow-­‐33%,  Mixed  willow/sedge-­‐14%,  and  Tussock  tundra-­‐<1%  
  16. 16. Objective  goal  is  to  contrast  fish  diets  from  stream  reaches  with  differences  in  riparian  vegetation  composition    Diet  Sampling    -­‐Gastric  lavage  to  remove  stomach  contents    -­‐Fishing  efforts  will  be  divided  into  10  stream  sections  (same  sections  as  vegetation  sampling)      
  17. 17. -­‐  Terrestrial  invertebrates  were  relatively  important  for  juvenile   grayling,  but  surprisingly  not  adults  -­‐  What  were  the  adults  eating?      Ninespine  stickleback!  
  18. 18. 9 10 8 7 3 4 5 6 1 2No DataNo Data 2011  Grayling  Capture  in  Crea  Creek   60   50   Number  of  Grayling  Captured   40   -­‐  Cluster  analysis  and  NMDS   30   ordination  to  show  invertebrate   20   communities  associated  with   Juvenille   Adult   10   riparian  vegetation  and  fish  diet   0   June   August   June   August   June   August   June   August   June   August   June   August   June   August   June   August   June   August   June   August   July   July   July   July   July   July   July   July   July   July   1   2   3   4   5   6   7   8   9   10   Reach  Number  and  Month  
  19. 19. -­‐  Climate  change  and  increased  oil  and  gas  development  on  the  NPRA  pose  threats  to  ecological  processes  in  aquatic  ecosystems    -­‐  Beaded  streams  provide  important  habitat  for  fishes    -­‐  Riparian  vegetation  plays  a  vital  role  in  stream  food  webs  by  supporting  terrestrial  and  aquatic  invertebrates—the  primary  food  source  for  grayling  and  other  fishes  -­‐  Understanding  energy  and  nutrient  flow  between  streams  and  their  riparian  communities  is  paramount  to  understanding  how  Arctic  aquatic  habitats  and  ecosystems  will  respond  to  changes  in  climate  and  land  use        
  20. 20. A  big  thanks  to  our  collaborators  for  their  financial  and  logistical  support:    Matthew  Whitman  with  BLM,  Chris  Arp  with  UAF,  Mary  Beth  Lowen  with  US  Fish  and  Wildlife  Service,  UAF  Department  of  Biology  and  Wildlife,  Field  Technician  Katie  Hayden,  and  helicopter  pilot  Keelan  McNulty.    
  21. 21. Allan,  J.D.,  M.S.  Wipfli,  J.P.  Caouette,  A.  Prussian,  and  J.  Rodgers.  2003.  Influence  of  Streamside  Vegetation  on  Inputs  of  Terrestrial    Invertebrates  to  Salmonid  Food  Webs.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences.  60:  309-­‐320.  Cadwallader,  P.L.,  Eden,  A.K.,  and  Hook,  R.A.  1980.  Role  of  streamside  vegetation  as  a  food  source  for  Galaxias  olidus  Günther  (Pisces:    Galaxidae).  Freshwater  Resources.  31:257-­‐262.  Frey,  K.  E.,  and  J.  W.  McClelland.  2009.    Impacts  of  permafrost  degradation  on  arctic  river  biogeochemistry.  Hydrological  Processes.  23:  169-­‐  182.  IPCC,  2001  Climate  change  2001:  impacts,  adaptation,  and  vulnerability.  In:  Contribution  of  Working  Group  II  to  the  Third  Assessment    Report  of  the  Intergovernmental  Panel  on  Climate  Change  (Eds  J.J.  McCarthy,  O.F.  Canziani,  N.A.  Leary,  D.J.  Dokken  &  K.S.    White),  Cambridge  University  Press,  Cambridge,  U.K.  Kawaguchi  Y.  &  Nakano  S.  2001.  Contribution  of  terrestrial  invertebrates  to  the  annual  resource  budget  for  salmonids  in  forest  and    grassland  reaches  of  a  headwater  stream.  Freshwater  Biology.  46.  303–31  Nielson,  J.L.    1992.    Microhabitat-­‐specific  foraging  behavior,  diet,  and  growth  of  juvenile  coho  salmon.    Transactions  of  American  Fisheries    Soceity.  121:617-­‐634.  Peterson,  K.  M.  and  Billings,  W.  D.  1980.  Tundra  vegetational  patterns  and  succession  in  relation  to  microtopography  near  Atkasook,    Alaska.  Arctic  and  Alpine  Research.  12:  473-­‐482.  Rouse,  W.,  M.  Douglas,  R.  Hecky,  A.  Hershey,  G.  Klin,  L.  Lesack,  P.  Marsh,  M.  McDonald,  B.  Nicholson,  N.  Roulet,  and  J.  Smol.  1997.  Effects    of  Climate  Change  on  the  Freshwaters  of  Arctic  and  Subarctic  North  America.  Hydrological  Processes.  11:  873-­‐902.  Tape,  K.,  M.  Sturm,  and  C.  Racine.  2006.  The  evidence  for  shrub  expansion  in  northern  Alaska  and  the  pan-­‐Arctic.  Global  Change  Biology    12:  686-­‐702.  Walker,  D.A.,  Everett,  K.R.  1991.  Loess  ecosystems  of  northern  Alaska:  regional  gradient  and  toposequence  at  Prudhoe  Bay.  Ecological  Monographs.  61:(4):437-­‐464.  Wipfli,  M.S.  1997.  Terrestrial  Invertebrates  as  Salmonid  prey  and  Nitrogen  Sources  in  Streams:  Contrasting  Old-­‐growth  and  Young-­‐growth    Riparian  Forests  in  Southeastern  Alaska,  USA.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences.  54:  1259:1269.