Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Are emission reductions from peatlands mrv able

1,769 views

Published on

Are emission reductions from peatlands MRV-able?

  • Be the first to comment

  • Be the first to like this

Are emission reductions from peatlands mrv able

  1. 1. Challenges and options John Couwenberg Hans Joosten Greifswald University Are emission reductions from peatlands MRV-able
  2. 2. Stocks & emissions <ul><li>Current Carbon stock in peat soils: </li></ul><ul><li>~550 000 Mt C </li></ul><ul><li>Current emissions from drained peatlands: </li></ul><ul><li>>2000 Mt CO 2 y -1 </li></ul>
  3. 3. Global CO 2 emissions from drained peatlands 2077 63 Total 105 30 3.5 Temperate/tropical peatland forestry 12 1 12 Boreal peatland forestry 60 1 30 Peat extraction 150 30 5 Urbanisation, infrastructure 750 25 30 Peatland agriculture outside SE Asia 400 Peatland fires in SE Asia 600 50 12 Drained peatlands in SE Asia Total CO 2 (Mton y -1 ) CO 2 (ton ha -1 y -1 ) Drained area (10 6 ha)
  4. 4. Mitigation management options <ul><li>Conservation of the C stock </li></ul><ul><li>Sequestration of C from the atmosphere </li></ul><ul><li>Substitution of fossil materials by biomass. </li></ul>
  5. 5. Conservation management <ul><li>Conserve existing peat C pools: </li></ul><ul><li>Prevent drainage </li></ul><ul><li>Reverse drainage by rewetting </li></ul>
  6. 6. yearly emissions time Reducing the rate of deforestation (rate of reclamation of new areas)
  7. 7. yearly emissions time Reducing the rate of peatland drainage (rate of reclamation of new areas) Peatlands continue emiting for decades after drainage: Annual emissions are cumulative
  8. 8. Conservation management <ul><li>Rewetting is the only option to reduce emissions </li></ul><ul><li>Strategic rewetting of 30% (20 Mio ha) of the world’s drained peatlands could lead to an annual emission avoidance of almost 1000 Mtons CO 2 per year. </li></ul>
  9. 9. Sequestration management <ul><li>~75% of peatlands are still pristine </li></ul><ul><li>accumulating new peat </li></ul><ul><li>removing & sequestering 200 Mtons CO 2 y -1 </li></ul><ul><li> strict protection </li></ul><ul><li>rewet 20 Mio ha </li></ul><ul><li>restore peat accumulation in 10 Mio ha </li></ul><ul><li> additional removal ~10 Mtons CO 2 y -1 </li></ul>
  10. 10. Substitution management <ul><li>replacing fossil resources by biomass from drained peatlands: </li></ul><ul><li> CO 2 emitted > CO 2 avoided </li></ul><ul><li>biomass from wet peatlands or </li></ul><ul><li>paludiculture (= wet agriculture and forestry) </li></ul><ul><li>implemented on 10 Mio ha of rewetted peatland  substitution of 100 Mtons of CO 2 </li></ul>
  11. 11. Peatland management <ul><li>avoiding peatland degradation and </li></ul><ul><li>actively restoring peatlands </li></ul><ul><li>results in significant climate benefits </li></ul><ul><li> quantify emission reductions </li></ul>
  12. 12. Measure drained…
  13. 13. … and (re-)wet(ted) situation...
  14. 14. frequent, prolonged, intensive
  15. 15. expensive, complex, time consuming
  16. 16. Peenetal Measure pilot sites, develop proxies for the rest
  17. 17. Proxies: water level -120 -100 -80 -60 -40 -20 0 mean annual water level [cm] t CO2 ha -1 y -1 0 10 20 30 40 50 Good proxy for CO 2 emissions: Example temperate Europe
  18. 18. Proxies: water level -100 0 100 200 300 400 500 600 -100 -80 -60 -40 -20 0 20 40 60 mean water level [cm] kg CH 4 ?ha -1 y -1 -2 0 2 4 6 8 10 12 t CO 2 -eq?ha -1 y -1 Good proxy for CH 4 emissions: Example temperate Europe
  19. 19. Proxies: water level Good proxy for CH 4 emissions: Boreal/temp Europe SEAsia At high water levels differences due to vegetation -0,5 0 1 2 3 CH 4 emission [mg m -2 h -1 ] 0 5 10 15 -100 -80 -60 -40 -20 0 20 water level [cm]
  20. 20. Emissions strongly related to water level Vegetation strongly related to water level  Use vegetation as indicator for emissions
  21. 21. Proxies: vegetation <ul><li>developed for NE Germany </li></ul><ul><li>currently being verified, calibrated and updated for major peatland rewetting projects in Belarus. </li></ul>
  22. 22. Proxies: vegetation <ul><li>Advantages of using vegetation </li></ul><ul><li>reflects longer-term water level conditions </li></ul><ul><li>reflects factors that determine GHG emissions (nutrient availability, acidity, land use…), </li></ul><ul><li>itself determines GHG emissions (quality of OM, aerenchyma mediated CH 4 ) </li></ul><ul><li>allows fine-scaled mapping (1:2,500 – 1:10,000) </li></ul>
  23. 23. Proxies: vegetation <ul><li>Disadvantage of using vegetation </li></ul><ul><li>slow reaction on environmental changes </li></ul><ul><li>necessity to calibrate for different climatic and phytogeographical conditions. </li></ul>
  24. 24. GESTs: Greenhouse gas Emission Site Types
  25. 25. GESTs with indicator species groups GEST: moderately moist forbs & meadows <ul><li>Vegetation forms: </li></ul><ul><ul><li>Urtica-Phragmites reeds </li></ul></ul><ul><ul><li>Acidophilous Molinia meadow </li></ul></ul><ul><ul><li>Dianthus superbus-Molinia meadow </li></ul></ul><ul><ul><li>… </li></ul></ul>Each with typical / differentiating species Each GEST with GWP
  26. 26. Proxies: subsidence <ul><li>loss of peatland height due to oxidation </li></ul><ul><li>complication: consolidation, shrinkage </li></ul><ul><li>promising especially in the tropics: subsidence based methodology being developed by the Australian-Indonesia Kalimantan Forests Carbon Partnership. </li></ul>
  27. 27. Proxies: subsidence Oxidative component derived from changes in bulk density and ash content: 0 1 2 3 4 5 6 7 -120 -100 -80 -60 -20 0 subsidence [cm y -1 ] 0 Estimated emission [t CO 2 ha -1 y -1 ] 8 9 10 10 20 30 40 50 60 70 80 90 -40 drainage depth [cm]
  28. 28. Proxies: subsidence <ul><li>possible to measure using remote sensing and ground-truthing </li></ul><ul><li>works well for losses from drained peatlands, but less for decrease in losses under rewetting (swelling) </li></ul>
  29. 29. Monitoring emission reductions from rewetting and conservation <ul><li>wide range of land use categories </li></ul><ul><li>may require different approaches to </li></ul><ul><ul><li>reduction of GHG emissions </li></ul></ul><ul><ul><li>monitoring these reductions </li></ul></ul><ul><li>land use may enhance GHG emissions (plowing, fertilization, tree removal) </li></ul>
  30. 30. Monitoring emission reductions from rewetting and conservation <ul><li>Avoided emissions need clear baseline </li></ul><ul><li>clear in case of rewetting </li></ul><ul><li>proxy approach for avoided drainage </li></ul><ul><ul><li>Note: peat depth determines duration of possible emissions after drainage </li></ul></ul>
  31. 31. Monitoring emission reductions from rewetting and conservation <ul><li>cost of monitoring is related to the desired precision of the GHG flux estimates. </li></ul><ul><li>determined by market value of ‘carbon’ </li></ul><ul><li>assessing the GHG effect of peatland rewetting by comprehensive, direct flux measurements might currently cost in the order of magnitude of € 10 000 ha -1 y -1 </li></ul>
  32. 32. Monitoring by proxies <ul><li>Monitoring GHG fluxes using water levels: </li></ul><ul><li>data frequent in time, dense in space.  field observations and automatic loggers. </li></ul><ul><li>water level modelling based on weather data </li></ul><ul><li>remote sensing not yet suited </li></ul>
  33. 33. Monitoring by proxies <ul><li>Monitoring GHG fluxes using Vegetation: </li></ul><ul><li>easily mapped and monitored in the field </li></ul><ul><li>monitoring by remote sensing has been tested successfully and is very promising, also in financial terms. </li></ul>
  34. 34. Monitoring by proxies <ul><li>Monitoring GHG fluxes using subsidence: </li></ul><ul><li>easily monitored by field observations, but practically impossible over large areas when annual losses are high. </li></ul><ul><li>In tropical peatlands (several cm y -1 ) the use of LiDAR looks very promising. </li></ul>
  35. 35. Monitoring of proxies <ul><li>derivation of actual emissions from proxies open to improvement </li></ul>
  36. 36. <ul><li>conservative estimates indicate that </li></ul><ul><li>reduced and avoided emissions </li></ul><ul><li>from peatland rewetting and conservation </li></ul><ul><li>can provide a major contribution to </li></ul><ul><li>climate change mitigation </li></ul>

×