Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- Properties of estimators (blue) by Kshitiz Gupta 994 views
- Mec-105 2015-16 Free Ignou Assignment by Rahul Singh 4299 views
- Point estimation by Shahab Yaseen 581 views
- IGNOU MA ECONOMICS MICROECONOMICS M... by Naresh Sehdev 16978 views
- Point Estimation by DataminingTools Inc 3174 views
- Theory of estimation by Tech_MX 15044 views

No Downloads

Total views

1,219

On SlideShare

0

From Embeds

0

Number of Embeds

106

Shares

0

Downloads

16

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Properties of Point Estimators
- 2. Point Estimate vs. Interval Estimate • Statisticians use sample statistics to use estimate population parameters. (i.e. Sample means are used to estimate population means and sample proportions are used to estimate population proportions) • A population parameter can be conveyed in two ways 1. Point Estimate: a single number that is based on sample data and represents a plausible value of the characteristic p = # of successes in sample n 2. Interval estimate: use of sample data to calculate an interval of possible values of an unknown population parameter
- 3. Confidence Intervals • Confidence intervals are used to express the precision and uncertainty associated with a particular sampling method • A confidence Interval (CI) consists of three parts 1. Confidence Level 2. Statistics 3. Margin of Error
- 4. • Confidence Level: describes the uncertainty of the sampling method • Statistics & Margin of Error describe the precision of the method by defining an interval estimate • Interval Estimate = sample statistic + margin of error NOTE: confidence intervals are preferred to point estimates because confidence intervals indicate precision and uncertainty of estimate EX: Suppose we compute the interval estimate of the population parameter, using a 90% confidence interval. This means if we use an identical sampling method and choose different samples to compute different interval estimates, the true population parameter’s range would be defined as: sample statistics + margin of error 90% of the time.
- 5. Confidence Level • In confidence intervals, the confidence level (CL) plays the role of the probability part. • Describes the likelihood that a particular sampling method will generate a Confidence Interval (CI) that includes the true population parameter • To interpret: If you collect all possible samples from each given population and compute the confidence intervals for each, then a 95% confidence interval means that 95% of the interval includes the true population parameter.
- 6. Margin of Error • Margin of Error: the range of values above and below the sample statistic in a confidence interval • EX: If a survey is given to your student body and it reports that 70% of students choose English as their favorite subject, then you can state that the survey had a 10% margin of error and confidence level of 90% which results in a confidence interval of being 90% confident that English will receive between 60% and 80% of the vote.
- 7. Bias/ Unbiased • Bias: A preference or an inclination, especially one that inhibits impartial judgment. • Unbiased: having no bias or prejudice (being fair or impartial) • Of a sample: not affected by an irrelevant factors, variables or selectivity which influence it’s distribution; random • Of an estimator: having an expected value equal to the parameter being estimated
- 8. Review of Variability • Variability: spread in a set of data that can be described by summary measures through means of range, interquartile range, variance and standard deviation • Range: difference between largest and smallest values in a set of data • IQR= Q3 –Q1 • Variance (σ²) = Σ( xi – μ) N Standard Deviation (σ) = √(σ²)

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment