Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Efficiënt watergebruik: een mondiaal probleem voor Vlaanderen

Efficiënt watergebruik: een mondiaal probleem voor Vlaanderen.
Presentatie voor Rudy Vannevel, VMM tijdens IFEST 2012 op woensdag 15 februari 2012.
www.ifest.be

  • Be the first to comment

  • Be the first to like this

Efficiënt watergebruik: een mondiaal probleem voor Vlaanderen

  1. 1. Efficiënt Watergebruik: een mondiaal probleem voor Vlaanderen Rudy Vannevel IFEST Seminarie Vlaamse Milieumaatschappij A. Van de Maelestraat 96 B-9320 Erembodegem Gent-Flanders Expo, Belgium 15.02.2012 r.vannevel@vmm.be© VMM – R. Vannevel
  2. 2. Inhoud 1. Terminologie & context 2. Sanitaire revolutie 3. Implementatie W.ResEff 4. Integratie in de praktijk 5. Uitdagingen© VMM – R. Vannevel
  3. 3. Terminologie ‘Efficiënt Watergebruik’ 1. Efficiënt vs. rationeel - Kosten- vs milieuefficiëntie 2. Gebruik vs. verbruik - Aanwending vs. omzet 3. Water vs Resources - Water = ‘een natuurlijk goed’ - ‘Resources’= voorraad vs. hulpbron >> “rationeel gebruik watervoorraden”© VMM – R. Vannevel
  4. 4. Sanitaire revolutie London: “The Dolphin or Grand Junction Nuisance” (John Wright, 1827) 1. The Dolphin – Thames river 2. Great common sewer 3. Grand Junction Company – water supply 7000 fam. Westminster (steam engine house) 4. Chelsea Hospital© VMM – R. Vannevel
  5. 5. Politics Economic capital Sanitary revolution Cholera People migration Waste water treatment Law Spatial Drinking water infrastructure supply Public Administration Sciences Social Natural capital capital Industrial revolution – Technological developments Environmental technology Medical developments Environmental law Policy developments Developments© VMM – R. Vannevel
  6. 6. Sanitary revolution: innovations & developments Environmental technology Medical Drinking water supply - Bacteriology - sand filtration drinking water supply - cast-iron water pipes Sanitary facilities Environmental law - toilets + floating ball system Waste water collection - ‘Waterworks Clauses Act’ (1848) - arterial sewer networks (+ manholes) - main sewers Policy - rain water > waste water sewers - Commercial water companies > - separate rain/waste w. sewers public authorities Waste water treatment - filter beds - sludge treatment Firefighting = Water resource efficiency - ball hydrant & hose reel© VMM – R. Vannevel
  7. 7. Politics Economic capital Sanitary revolution Cholera People migration Waste water treatment Law Spatial Drinking water infrastructure supply Public Administration Sciences Social Natural capital ? capital Industrial revolution – Technological developments Environmental technology Sustainable development Medical developments Environmental law Policy developments© VMM – R. Vannevel
  8. 8. England European cities Haïti (2010): cholera 19th C. 19th-20th C. Indonesia, India: diarrhoea ‘Sanitary revolution’ ‘Sanitary revolution’ …:… Water Europe Worldwide Londen Local – Regional - Global 1950 - Smog – Mexico City MA New Clean Air Act 1950 > 1980 > 2005 : Air 3.1 > 13.4 > 19.2 mill. inh. 1992: Air Quality Progr. China – Chongqing 21st C. Worldwide = ‘Sanitary revolution’ bis > 1990 - 32 mil inh. / 31815 km² (metr.) ‘Climate change’ / +25 km²/y Combined env. issues Atmosphere Urban (metropolitan) areas© VMM – R. Vannevel
  9. 9. Climate change impact – Sea level rise Saline intrusion in the Belgian coastal area(Prof. Luc Lebbe, Ghent University)© VMM – R. Vannevel
  10. 10. Politics Economic capital Sanitary revolution Cholera People migration Waste water treatment Law Spatial Drinking water infrastructure supply Public Administration Sciences Social Natural capital ? capital Industrial revolution – Technological developments Environmental technology W.STRESS Medical developments W.use ~ W.demand Environmental law ~ w.supply ~ w.abstraction Policy developments ~ w.availability© VMM – R. Vannevel
  11. 11. W.Use & 1800 1886 1990 2000 2010 2030 2050 Res.Eff. 1 mio inh. London w.use >>> w.use = pop. growth. 0.7 mio m³/d DWS = W.stress : Flanders 0.5 mio m³/d medium Pop. Urban areas: EU 70% OECD W.abstraction reduction in 1/3 countries countries W.pricing HH: - 20% w.use Migration to metropolitan & coastal areas Developing countries W.Use = 2x pop.growth / 100 y W.stress : Severe for 3.9 Bll people Worldwide W.demand : + 55 % Manuf.: +400 % HH: +130 %© VMM – R. Vannevel
  12. 12. Implementatie W.ResEff • Top-down internationaal > lokaal – UNESCO WWDR (2003) / EU White Paper CC (2009) – Europe 2020 Strategy – flagships (2011) – EU Roadmap ResEff 2011: • Stocks – abstraction – use / Mitigation – EU Blueprint 2012 < EEA SoWater 2012 • DO > NES kapitalen > IWB + ‘Green economy’ • Water ~ E ~ prod/cons > LCA • Integratie = complexiteit© VMM – R. Vannevel
  13. 13. SD Socio-economic resilience Economic capital (E) Social capital (S) (well-being) (economic growth) 0 emax e~neqs Green Economy s1 e2 s2’ e1 s2 s~neqs smax 0 n1 0 nmax neqs n2 Relative Absolute n2’ decoupling decoupling Resource efficiency Resource use reduction Integrated Water Res. Management Ecosystem resilience SoE deterioration SoE improvement Natural capital (N) (natural resources use)© VMM – R. Vannevel
  14. 14. Integratie in de praktijk • Overheid – NGO’s – private sector – Overheid: sturende regelgeving en planning (Indicatoren (Water Footprint?)) – NGO’s: sensibilisering en auditing (EWP: EW Standard : http://www.ewp.eu/activities/water-stewardship/ ) – Private sector: win/win (W.Footprint!) • W.Keten/systeem: – w.keten/systeem massa- & vrachtenbalansen – Sectorale w.audits (http://www.waterloketvlaanderen.be/publicaties)© VMM – R. Vannevel
  15. 15. WWCT. Wastewater W.reuse efficiency Collection & Treatment WWP. Wastewater Production S. Sectors WU. Water Use W.use efficiency Socio-economic needs WS. Water Supply WT. Water Treatment W.Supplies Demand = Abstraction Water Demand Water Abstraction WATER QUANTITY STRESS W.Scarcity W.Exploitation Demand < Available Abstraction < Available Water Availability W. Stock / storage Polluted water WSys. WATER SYSTEM Ecosystem needs Precipitation + Inflow Evapotranspiration + Outflow W.Res. Renewable Resources© VMM – R. Vannevel
  16. 16. © VMM – R. Vannevel
  17. 17. ResEff. NV CB (BE-FL, 2011) (volumes in mio m³/y) IP. Industrial plant CB (Production: 100.000 t/y citric acid) P. Precipitation 733 mm/y GW. levies GW. Ground water L. Land Status: vulnerable Costs. Private investment Costs. Subsidies FL gov. 40 % = # mio € 60% = # mio € WAb. Other IPs WAb. Abstraction CB ≤ 2010 / Costs. Total costs UWWTP. Tienen Capac. 26.100 i.e Q effluent: 3.2 / 2011 ≥ WAb. Cooling WReU. Cooling ≤ 2010 / SW treatment Other sources Drinking water: Wprocess. Production Wprocess. Cooling Products: Brownfield sanit.: Loss Loss SW. Surface water IWWTP. CB IWWTP. CB > 3.5 WW treatment E! Effluent cooling© VMM – R. Vannevel
  18. 18. Uitdagingen 1. W.quantity vs W.quality 2. W.safety > floods & droughts < w.stress 3. Spatial planning: floodplains & retention areas < land use < role of agriculture 4. Dw.supply and urbanisation < public health 5. W.reuse & w.saving 6. W.sector > eco-techn. & eco-innovation < knowledge- based economy 7. W.chain & Energy reduction 8. Transition cities < CC 9. W.market: w.pricing + w.allocation 10. … COMPLEXITY Multi-thematic * Multidisciplinary * Multi-stakeholder approach© VMM – R. Vannevel

×