Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

An Integrated Socio/Technical Crowdsourcing Platform for Accelerating Returns in eScience

411 views

Published on

Conference talk at ISWC 2011 for the award winning outrageous ideas track, October 2011, Bonn, Germany

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

An Integrated Socio/Technical Crowdsourcing Platform for Accelerating Returns in eScience

  1. 1. An  Integrated  Socio-­‐Technical   Crowdsourcing  Pla8orm  for   Accelera;ng  Returns  in  eScience   Karl  Aberer,  Alexey  Boyarsky,   Philippe  Cudré-­‐Maurox,  Gianluca   Demar-ni,  and  Oleg  Ruchayskiy  
  2. 2. Science   Yesterday   Today   GiIed  Individuals   Collabora;ve  Effort  
  3. 3. OPERA  Collabora;on  
  4. 4. Scien;st-­‐Computer  Symbiosis   •  A  single  scien;st  has  no  more  the  capacity  to   process  all  the  informa;on   – High  complexity  of  systems  and  workflows   – Various  fields  of  exper;se  involved   •  New  discoveries  will  emerge  from   community-­‐based  socio-­‐technical  systems  
  5. 5. Community-­‐based  Socio-­‐technical  Systems   •  Such  pla8orms  will  be  useful   – Locally  to  the  scien;st     – By  extrac;ng  knowledge  used  globally   •  They  will  enable  cross-­‐pollina;on   – All  ar;facts  need  to  be  interoperable   – Higher  order  logic  to  combine  them  
  6. 6. Science   Tomorrow   Collec;ve  Intelligence  
  7. 7. What  do  we  need?   •  Highly-­‐expressive  machine-­‐readable  formats   – Ontologies  of  unprecedented  quality   – Implicit  knowledge  available  in  the  head  of  the   experts   •  Understanding  concepts,  assump;ons,   phenomena,  abstrac;ons   •  Create  a  mental  map  of  a  research  field   •  Understand  analysis  methods  
  8. 8. A  Giant  Crowdsourcing   Conceptualiza;on  Machine  
  9. 9. Towards  Self-­‐Awareness   •  A  Scien;fic  infrastructure   – Complex  ontological  networks   – Capture  the  scien;fic  process   – Automate  rou;ne  opera;ons   – Share  scien;fic  ar;facts   •  Experts  will  train  the  system  with  their  daily   ac;vi;es  
  10. 10. An  “entropy-­‐reduc;on”  machine   •  Relate  en;;es   •  Provide  lineage  informa;on   •  Discriminate  conflic;ng  informa;on   •  Reason  and  infer  new  data  
  11. 11. The  Web:  a  Collec;ve  Intelligence  engine     •  Informa;on  systems  are  not  instruments   •  A  catalyst  for  the  scien;fic  progress   •  Reason  and  combine  scien;fic  ar;facts  at  very   large  scale   •  Individual  scien;st  will  not  be  able  to  fully   appreciate  models  and  methods  
  12. 12. Scien;fic  progress   Time   Now  

×