Successfully reported this slideshow.
Upcoming SlideShare
×

# Math unit10 logic and venn diagrams

373 views

Published on

Logic and venn diagram

You can Find other resources on http://www.elearnjavle.org

Published in: Education
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### Math unit10 logic and venn diagrams

1. 1. Unit 10 – Logic and Venn Diagrams Presentation 1 Venn Diagrams: Example Presentation 2 Venn Diagrams: Key Definitions Presentation 3 Venn Diagrams: Illustrating Sets Presentation 4 Venn Diagrams: Theoretical Example Presentation 5 Venn Diagram: Practical Example
2. 2. Unit 10 – Logic and Venn Diagrams Venn Diagram: Example
3. 3. Using the numbers 0, 1, 2, … , 9 illustrate the sets: and Solution: Use a Venn diagram
4. 4. Using the numbers 0, 1, 2, … , 9 illustrate the sets: and A B 4 is in BOTH sides 4
5. 5. Using the numbers 0, 1, 2, … , 9 illustrate the sets: and A B 7 and 9 are only in set A 4 7 9
6. 6. Using the numbers 0, 1, 2, … , 9 illustrate the sets: and A B 1, 2, 3 and 5 are only in set B 4 7 9 1 2 3 5
7. 7. Using the numbers 0, 1, 2, … , 9 illustrate the sets: and A B 0, 6 and 8 are not in A or B 4 7 9 1 2 3 5 0 6 8
8. 8. You have finished viewing the presentation Venn Diagrams: Example Please choose an option Return to the Start Presentation 2 Venn Diagrams: Key Definitions Presentation 3 Venn Diagrams: Illustrating Sets Presentation 4 Venn Diagrams: Theoretical Example Presentation 5 Venn Diagram: Practical Example
9. 9. Unit 10 – Logic and Venn Diagrams Venn Diagram: Key Definitions
10. 10. A B Intersection: Members of both set A and set B
11. 11. A B Union: Members of set A or set B or both
12. 12. Complementary: Members not in the set A A’
13. 13. Universal Set: All members U
14. 14. A B Subset: All members of set A are in set B
15. 15. Number of elements in a set: Empty set:
16. 16. You have finished viewing the presentation Venn Diagrams: Key Definitions Please choose an option Return to the Start Presentation 1 Venn Diagrams: Example Presentation 3 Venn Diagrams: Illustrating Sets Presentation 4 Venn Diagrams: Theoretical Example Presentation 5 Venn Diagram: Practical Example
17. 17. Unit 10 – Logic and Venn Diagrams Venn Diagrams: Illustrating Sets
18. 18. A B U
19. 19. A B U
20. 20. A B U
21. 21. A B U
22. 22. A B U
23. 23. A B U
24. 24. A B U
25. 25. A B U
26. 26. A B U
27. 27. A B U
28. 28. You have finished viewing the presentation Venn Diagrams: Illustrating Sets Please choose an option Return to the Start Presentation 1 Venn Diagrams: Example Presentation 2 Venn Diagrams: Key Definitions Presentation 4 Venn Diagrams: Theoretical Example Presentation 5 Venn Diagram: Practical Example
29. 29. Unit 10 – Logic and Venn Diagrams Venn Diagrams: Theoretical Example
30. 30. A B U What is the shaded region?
31. 31. A B U What is the shaded region?
32. 32. A B U What is the shaded region?
33. 33. A B U What is the shaded region? C )CA(B ∪∩
34. 34. A B U What is the shaded region? C )'CBA( ∪∪
35. 35. A B U What is the shaded region? C )B'C(A ∪∪
36. 36. You have finished viewing the presentation Venn Diagrams: Theoretical Example Please choose an option Return to the Start Presentation 1 Venn Diagrams: Example Presentation 2 Venn Diagrams: Key Definitions Presentation 3 Venn Diagrams: Illustrating Sets Presentation 5 Venn Diagrams: Practical Example
37. 37. Unit 10 – Logic and Venn Diagrams Venn Diagram: Practical Example
38. 38. U = {Natural Numbers less than 16} Describe set A and set B A = {Even Numbers} B = {Prime Numbers} A B 4 10 14 6 12 8 2 13 5 7 3 11 1 15 9 U
39. 39. U 28 20 14 16 26 12 18 24 30 10 25 15 21 27 13 19 11 29 17 Describe Sets U, A, B and C U = {10,11,12,13,14,........29,30} A = {Even Numbers} B = {Multiples of 3} C = {Multiples of 5} C BA 22 23
40. 40. You have finished viewing the presentation Venn Diagrams: Practical Example Please choose an option Return to the Start Presentation 1 Venn Diagrams: Example Presentation 2 Venn Diagrams: Key Definitions Presentation 3 Venn Diagrams: Illustrating Sets Presentation 4 Venn Diagrams: Theoretical Example