Successfully reported this slideshow.

Zero eze

597 views

Published on

TU Delft

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Zero eze

  1. 1. 1Challenge the futureZero EZEThe sustainable future of general aviation
  2. 2. 2Challenge the futureThrustProducer
  3. 3. 3Challenge the futureType Energy /Weight(Wh/kg)EnergyDensity(MJ/kg)Energy/Size(Wh/L)Power/weight(W/kg)RechargeEfficiency(%)Ni Cd 60 0.2 150 150 80Lead Acid 40 0.14 75 180 40Ni Metal Hyd 80 0.28 300 1000 80Lithium-ion 160 0.58 360 350 90Lithium-Sulphur 600 2 350 − 80Kerosene 12000 43 9000 No Limit −Hydrogen 33000 120 2500 No Limit −
  4. 4. 4Challenge the futureZero EZEAssignmentHybridpropelledBased on theLong EZDue in2020
  5. 5. 5Challenge the futureZero EZEDesign trade-offBatteries+Piston engineFuel cell+Piston engineTypical hybridsystemLoweremissionsLoweremissionsBetter thanbatteriesFuel cell+Piston engineZeroemissions
  6. 6. 6Challenge the futureZero EZE 2 H2 + O2 2 H2OProton Exchange Membrane Fuel Cell
  7. 7. 7Challenge the futureZero EZEPEM Fuel Cell SafetyElectrolyte: a polymer electrolyte in the form of a thin, permeablesheet.Efficiency: is about 40 to 50%Operating temperature: about 80 degrees C (about 175 degrees F).Cell outputs: range from 50 to 250 kW.The solid, flexible electrolyte will not leak or crack, and these cellsoperate at a low enough temperature to make them suitable for homesand cars. But their fuels must be purified, and a platinum catalyst is usedon both sides of the membrane, raising costs
  8. 8. 8Challenge the futureZero EZEDesign trade-offWhy has this not been used before?
  9. 9. 9Challenge the futureZero EZEPEM Fuel Cell Cost
  10. 10. 10Challenge the futureZero EZEInternal LayoutPropulsion
  11. 11. 11Challenge the futureZero EZEHydrogen Storage Tanks
  12. 12. 12Challenge the futureZero EZEInternal Layout
  13. 13. 13Challenge the futureZero EZE• Fuel Cell System• Cockpit• Landing Gear• Ballistic Chute• LuggageInternal Layout
  14. 14. 14Challenge the futureZero EZEExternal LayoutAerodynamicsStructures
  15. 15. 15Challenge the futureZero EZEHow to make it fly?
  16. 16. 16Challenge the futureZero EZEFuselage• Low-drag bodyMain Wing• Natural Laminar Flow airfoil• Sweep angle• Aspect ratioAerodynamics
  17. 17. 17Challenge the futureZero EZECanard• Vertical positionWinglets• Blended winglets• Vertical tail functionStability• Stable EigenmotionsAerodynamics
  18. 18. 18Challenge the futureZero EZEAerodynamicsEfficiencyNoiseFar Field 61 dB84.9 %88.6 %Propeller & Shroud
  19. 19. 19Challenge the futureZero EZEStructuresWing• Sandwich structure• Carbon Fiber Reinforced PolymerFuselage• Advanced Grid Stiffened Structure• Carbon Fiber Reinforced Polymer• Filament winding
  20. 20. 20Challenge the futureZero EZEStructuresFinite Element analysis in Patran/NastranFuselageWing
  21. 21. 21Challenge the futureZero EZEConclusionPerformanceRangeCost
  22. 22. 22Challenge the futureZero EZEPerformanceCruise speed308 km/hMaximum speed370 km/hTake-off distance490 m
  23. 23. 23Challenge the futureZero EZERange760kmOptimum range1320kmMax range
  24. 24. 24Challenge the futureZero EZE• 100 aircraft/yearCost Estimation and BreakdownCost allocation CostResearch, Development, Test and Evaluation € 20,000Production € 410,000Profit € 40,000Total Purchase Price € 470,000
  25. 25. 25Challenge the futureZero EZEWith cruise speed of 308 km/h, a range of 760 km can beachieved, meanwhile producing zero emissions.ConclusionBut wait, there is more!DublinMonacoMilanRotterdamFuel costs € 45 ,-
  26. 26. 26Challenge the futureZero EZEHistorical note
  27. 27. 27Challenge the futureZero EZEAnother problem
  28. 28. 28Challenge the futureZero EZEProspering economyEconomy that is not dependent on oilHow does this relate to this project?
  29. 29. 29Challenge the futureZero EZE
  30. 30. 30Challenge the futureQuestions?

×