EMVT 12 september - Henk Polinder - TU Delft

594 views

Published on

Direct Drive in Wave Energy Conversion - AWS Full Scale Prototype Case Study
Miguel Prado, Henk Polinder

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
594
On SlideShare
0
From Embeds
0
Number of Embeds
171
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

EMVT 12 september - Henk Polinder - TU Delft

  1. 1. 1Challenge the future Miguel Prado, Henk Polinder Direct Drive in Wave Energy Conversion - AWS Full Scale Prototype Case Study
  2. 2. 2Challenge the future Structure 1 Introduction 2 Wave Energy Overview 3 AWS Wave Energy Converter 4 PTO of AWS Pilot Plant 5 Conclusions
  3. 3. 3Challenge the future Wave Energy is not new ... Source: Christine Miller (www.outsidelands.org/wave-motor.php) and Power Magazine 1911 Holland Wave Motor California, USA, 1895 US Wave Motor Corporation New Jersey, USA, 1911
  4. 4. 4Challenge the future Different technologies being developed Pelamis, Scotland Wavestar, Denmark OPT, USA OWC Pico, Portugal Source: www.wavec.org; www.emec.org.uk
  5. 5. 5Challenge the future Wavedragon, Denmark OEbuoy, Ireland Wavebob, Ireland Aquamarine, Scotland Source: www.wavec.org; www.emec.org.uk And many more …
  6. 6. 6Challenge the future Only a few direct drive applications ... Source: www.wavec.org; www.emec.org.uk AWS 2MW, The Netherlands Oregon Univ. 10kW, USAUppsala Univ. 10kW, Sweden
  7. 7. 7Challenge the future Structure 1 Introduction 2 Wave Energy Overview 2.1 Waves (Fundamentals & World Resource) 2.2 Wave Energy Conversion 3 AWS Wave Energy Converter 4 PTO of AWS Pilot Plant 5 Conclusions
  8. 8. 8Challenge the future Waves, a byproduct of solar energy ... Source: Hagerman, G., “Wave and Tidal Power: Projects and Prospects”, CEAG, 2005
  9. 9. 9Challenge the future  No net mass transport (particles follow elliptical orbits)  Skin effect (motion decays exponentially from surface)  Energy storage (kinetic & gravitational potential)  Dispersion in frequency (T=6-12s => Vg=5-10m/s)  Power transmission by pulses (2 x wave frequency) P Monochromatic Waves
  10. 10. 10Challenge the future time MAXPP 5.0 P P Monochromatic Waves
  11. 11. 11Challenge the future Real Seas (Polychromatic) P MAXPP 1.0 P time
  12. 12. 12Challenge the future Source: “Wave Energy Utilization in Europe – Current Status and Perspectives”, CRES , 2002 ; Kinsman, B., “Wind Waves”, Prentice Hall, New Jersey, 1965 World Offshore Wave Resource ~2 TW
  13. 13. 13Challenge the future ~ ~Wave (variable height and period) Electricity - Grid (constant voltage and frequency)WEC Wave Energy Conversion
  14. 14. 14Challenge the future Wave (variable height and period) Captor PTO (Power Take Off) 2 ... N1 Electricity - Grid (constant voltage and frequency) Wave Energy Conversion
  15. 15. 15Challenge the future Structure 1 Introduction 2 Wave Energy Overview 3 AWS Wave Energy Converter 3.1 Concept 3.2 Pilot Plant 4 PTO of AWS Pilot Plant 5 Conclusions
  16. 16. 16Challenge the future AWS Concept • Submerged Device (better survivability) • Variable Volume (higher performance) • Adjustable Natural Period (higher performance) • Direct Drive PTO (higher reliability & performance) • Water Brakes (additional safety)
  17. 17. 17Challenge the future • Captor diameter:9.5m • Captor stroke: 7m • Max. PTO Force: 1MN • Nominal speed: 2.2m/s • Deployment: easy & reversible • Test Location: North Portugal (44m) • Test Period: < 1 year 6 km ~ ~ Landstation 15kV Grid AWS Pilot Plant
  18. 18. 18Challenge the future Pilot Plant Construction (2000-2001)
  19. 19. 19Challenge the future Pilot Plant Final Submersion (2004)
  20. 20. 20Challenge the future Structure 1 Introduction 2 Wave Energy Overview 3 AWS Wave Energy Converter 4 PTO of AWS Pilot Plant 4.1 Design 4.2 Construction & Installation 4.3 Offshore Tests Results 5 Conclusions
  21. 21. 21Challenge the future Design Choices (Linear Generator) • Topology:  3-phase longitudinal flux PM machine  Magnets on the translator  Materials:  NdFeB magnets  Copper windings  Laminated iron (stator core), solid back iron (translator) • Geometry:  Flat, double-sided machine (balance of magnetic forces)  Translator > stator (higher overlap)  Slots/pole/phase: 1 • Cooling: water cooled • Power electronics: current source inverter
  22. 22. 22Challenge the future Design Options (Linear Generator) To p M id B o tto m T ra n s la to r S e g m e n t S ta to r S e g m e n t T ra n s la to r P o s itio n
  23. 23. 23Challenge the future Design Options (Converter) Grid 15kV, 50Hz AC/ACConverter Generator 0-6kV,0-21Hz 3kV/3kV/15kV 2x1330kVA AC/AC Converter RDC Generator 0-6kV, 0-21Hz
  24. 24. 24Challenge the future Construction (Translator)
  25. 25. 25Challenge the future Construction (Stator)
  26. 26. 26Challenge the future Installation (Stator)
  27. 27. 27Challenge the future Installation (Stator)
  28. 28. 28Challenge the future Installation (Translator)
  29. 29. 29Challenge the future Installation (Translator)
  30. 30. 30Challenge the future Installation (Land Station)
  31. 31. 31Challenge the future Offshore Test Results (Resistor Bank) ~ ~ 15kV Grid
  32. 32. 32Challenge the future Offshore Test Results (Grid Connected) 14:00 14:15 14:30 14:45 15:00 15:15 0 50 100 150 200 250 P DC (kW) 14:00 14:15 14:30 14:45 15:00 15:15 0 20 40 60 80 100 120 R DC () ~ ~ 15kV Grid
  33. 33. 33Challenge the future Structure 1 Introduction 2 Wave Energy Overview 3 AWS Wave Energy Converter 4 PTO of AWS Pilot Plant 5 Conclusions
  34. 34. 34Challenge the future Conclusions / Lessons learnt • AWS designed, built and tested • Test results demonstrate the operating principle • Only test results at low power levels • Difficulties of submersion operation underestimated • The principle of AWS is very simple, but all kinds of secondary systems compromise reliability • Economic viability is not easy
  35. 35. 35Challenge the future Thank you very much !

×