A. Postma 25 april 2013TE LAND, TER ZEE EN IN DE LUCHT:MET ELEKTRISCHE AANDRIJVINGEN KOM JE OVERAL.ELEKTRISCHE VERVOERMIDD...
Wie denkt dat snelladen voor elektrische gezinsauto’sdé toekomst is?Snelladen bestaat niet, nu niet en nooit niet.Prikkele...
Drivers electric transportSource
Erns & Young Publicatie 2012Oktober 2012
Opmerkelijke passage daarin
Internationale ontwikkelingen voorstandaardisatie en uitrol vanlaadinfrastructuurIEC SMB Ad Hoc advies groep voor: electro...
Overview of Generic Use Cases covering the whole scenery of Smart Grids
Wat hebben we tot nu toe bereikt?• Internationale erkenning waaronder:• Ontwikkeling OCPP• Ontwikkeling OCHP• Ontwikkeling...
Publicatie Eurelectric eind 2012
Gebaseerd op cijfers van stichting e-laad, EV-Box B.V, NUON en Essent, The New Motion (cijfers t/m 31-10-2012) en Oplaadpa...
Geographic coverage1. Nationwide spreadCharge point types1. Public AC 70% 10kW30 % 3,6 kW2. Home AC 3,6 kW3. High power DC...
Snel groeiend aantal FEV/PHEV
http://ev-services.net/e-Laad/Statistics
Wetvoorstel Europese commissie
Article 2DefinitionsFor the purpose of this Directive, the following definitions shall apply :(1) Alternative fuels mean f...
Member State Number ofrecharging points(in thousands)Number of publiclyaccessiblerecharging points(in thousands)BE 207 21B...
ANNEX IIITechnical specifications1. Technical specifications for electric recharging points1.1. Slow electric recharging p...
Oudste bekende batterij?Baghdad BatteryOf 250 BC
Baghdad BatteryOf 250 BC1836 John Frederic Daniell1799 Alessandro Volta
200 Years Later……….. Lead Acid Battery- Low Energy Density- Really Need No Ventilation ?-Thermal Run Away-Temperature Inst...
What is C rateThe charge and discharge current of a battery is measured in C-rateCurrent C Rate Discharge Time(min)5 0.05 ...
Beware: The Peukert Effect of Lead Acid BatteryWhat You See is NOT What You GetVminPE0,05 C = 20 uurreferentie1C = 1 uur ?...
C-rateDischargeCurrent(A)Lead Acid, 100Ah Kokum SLPB, 100AhDischarge capacity (Ah)Related capacity(%)Discharge capacity (A...
Van (k)Ah naar (k)WhMeestal wordt de capaciteit van accus opgegeven in Ah (Ampère uur)Dat zegt echter niets over de opgesl...
Laden volgens het CCCV principeTijd (uur)122010CLoodaccu 1/20 C continu0,5 C1 C2 CLaadprincipesEerst constante stroom C ra...
1,0001001010 100101,0001001010011PowerDensity(W/kg)Energy Density(Wh/kg)PowerDensity(W/lb)Energy Density(Wh/lb)Lead-Acid(1...
LiCoO2 + C6 Li 1-x CoO2 + C6LixChargeDischargeKokam Superior Lithium Polymer BatterySLPB technology contains no metal lith...
Highlights of the High5ive battery cell technology:•4.7V chemistry•300-350 Wh/kg•Over 2,000 cycles•Inherently safer relati...
Nanowire batteryA nanowire battery is a lithium-ion battery and consists of a stainless steel anodecovered in silicon nano...
Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium wasinvestigated. The influences of doping Y on structure,...
References• http://www.actacell.com• http://www.calcars.org/calcars-news/976.html• http://earth2tech.com/2008/07/23/batter...
lithium metal polymer DBM Energy Lekker Energie Audi A2 Kolibri AlphaPolymer Technology.mp4
1 . Impact Tester2 . Penetration Tester3 . Heating Tester4 . Crush Tester5 . Overcharge / Reverse charge Tester6 . Externa...
Accu testen
LaadvermogenTank 60 l voltanken in 1 minuutGoed voor 780 km (1 : 13)60 * 10kWh / 1 minuut = 36 MWattStel dat je evenveel k...
Tank 60 l voltanken in 1 minuutGoed voor 780 km (1 : 13)60 * 10kWh / 1 minuut = 36 MWattStel dat je evenveel km elektrisch...
Elektrische auto’s alleen voor korte afstanden?De ENEXIS EV Vloot heeft inmiddels meer dan 1.000.000 km afgelegdDat is gem...
Elektrisch vervoer van de toekomst
Elektrisch vervoer van de toekomst
Elektrisch vervoer van de toekomst
Elektrisch vervoer van de toekomst
Upcoming SlideShare
Loading in …5
×

Elektrisch vervoer van de toekomst

592 views

Published on

A. Postma Enexis

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
592
On SlideShare
0
From Embeds
0
Number of Embeds
273
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Elektrisch vervoer van de toekomst

  1. 1. A. Postma 25 april 2013TE LAND, TER ZEE EN IN DE LUCHT:MET ELEKTRISCHE AANDRIJVINGEN KOM JE OVERAL.ELEKTRISCHE VERVOERMIDDELEN VAN DETOEKOMSTDe stand van zaken bij elektrische auto’s• Europese uitrol van laadpalen• De accutechnologie
  2. 2. Wie denkt dat snelladen voor elektrische gezinsauto’sdé toekomst is?Snelladen bestaat niet, nu niet en nooit niet.Prikkelende stelling
  3. 3. Drivers electric transportSource
  4. 4. Erns & Young Publicatie 2012Oktober 2012
  5. 5. Opmerkelijke passage daarin
  6. 6. Internationale ontwikkelingen voorstandaardisatie en uitrol vanlaadinfrastructuurIEC SMB Ad Hoc advies groep voor: electro technology for mobilityTC 8 role models for e-mobilityTC 69 standards for EVSECenelec e-Mobility Coordination GroupAd hoc group for Smart ChargingTC 69xEU/M490Diverse werkgroepen waaronder Sustainable processes, Architectuuren Interoperabiliteit.
  7. 7. Overview of Generic Use Cases covering the whole scenery of Smart Grids
  8. 8. Wat hebben we tot nu toe bereikt?• Internationale erkenning waaronder:• Ontwikkeling OCPP• Ontwikkeling OCHP• Ontwikkeling OCSP• Invloed in Europees standaardisatie proces• Nederland in top 3 in publieke laadinfrastructuur• En daardoor ook in aantallen (PH)EV• Interoperabiliteit bij alle publieke laadinfraDoor unieke aanpak uitrol publieke infrastructuur o.a door instelling van E-laad
  9. 9. Publicatie Eurelectric eind 2012
  10. 10. Gebaseerd op cijfers van stichting e-laad, EV-Box B.V, NUON en Essent, The New Motion (cijfers t/m 31-10-2012) en Oplaadpalen.nl (vanafcijfers t/m 30-11-2012). In de data van Oplaadpalen.nl is (nog) niet aangegeven of laadpunten (semi-)publiek zijn. Voor deze figuur is deaanname gedaan dat laadpalen van e-laad, Nuon en Essent publiek zijn en de overige laadpalen in het bestand semi-publiekPublicatie AgentschapNL
  11. 11. Geographic coverage1. Nationwide spreadCharge point types1. Public AC 70% 10kW30 % 3,6 kW2. Home AC 3,6 kW3. High power DC 50kWInfrastructure installed future targets (2020)1. Public AC 2500 +10.0002. Public DC 25 4003. Home AC 500-1000 no targetVolledige nationale dekking
  12. 12. Snel groeiend aantal FEV/PHEV
  13. 13. http://ev-services.net/e-Laad/Statistics
  14. 14. Wetvoorstel Europese commissie
  15. 15. Article 2DefinitionsFor the purpose of this Directive, the following definitions shall apply :(1) Alternative fuels mean fuels which substitute fossil oil sources in the energy supply to transport and which have a potential to contribute to itsdecarbonisation. They include:• electricity,• hydrogen,• biofuels as defined in Directive 2009/28/EC of the European Parliament and the Council,• synthetic fuels,• natural gas, including biomethane, in gaseous form (Compressed Natural Gas – CNG) and liquefied form (Liquefied Natural Gas -LNG), and• Liquefied Petroleum Gas (LPG).(2) "Recharging point" means a slow recharging point or a fast recharging point or aninstallation for the physical exchange of a battery of an electric vehicle.(3) "Slow recharging point" means a recharging point that allows for a direct supply ofelectricity to an electric vehicle with a power of less than or equal to 22 kW.(4) "Fast recharging point" means a recharging point that allows for a direct supply ofelectricity to an electric vehicle with a power of more than 22 kW.(5) "Publicly accessible recharging or refuelling point" means a recharging or refuellingpoint which provides non-discriminatory access to the usersParagraaf over EV
  16. 16. Member State Number ofrecharging points(in thousands)Number of publiclyaccessiblerecharging points(in thousands)BE 207 21BG 69 7CZ 129 13DK 54 5DE 1503 150EE 12 1IE 22 2EL 128 13ES 824 82FR 969 97IT 1255 125CY 20 2LV 17 2LT 41 4LU 14 1HU 68 7MT 10 1NL 321 32AT 116 12PL 460 46PT 123 12RO 101 10SI 26 3SK 36 4FI 71 7SE 145 14UK 1221 122HR 38 4Article 4 Electricity supply for transportMember States shall ensure that a minimum number of recharging points for electricvehicles are put into place, at least the number given in the table in Annex II, by 31December 2020 at the latest.Te plaatsen laadpunten per 31-12-2020
  17. 17. ANNEX IIITechnical specifications1. Technical specifications for electric recharging points1.1. Slow electric recharging points for motor vehiclesAlternate Current (AC) slow recharging points for electric vehicles shall be equipped, forinteroperability purposes, with connectors of Type 2 as described in standard EN62196-2:2012.1.2. Fast electric recharging points for motor vehiclesAlternate Current (AC) fast recharging points for electric vehicles shall be equipped, forinteroperability purposes, with connectors of Type 2 as described in standard EN62196-2:2012.Direct Current (DC) fast recharging points for electric vehicles shall be equipped, forinteroperability purposes, with connectors of Type "Combo 2" as described in therelevant EN standard, to be adopted by 2014.Paragraaf over EV
  18. 18. Oudste bekende batterij?Baghdad BatteryOf 250 BC
  19. 19. Baghdad BatteryOf 250 BC1836 John Frederic Daniell1799 Alessandro Volta
  20. 20. 200 Years Later……….. Lead Acid Battery- Low Energy Density- Really Need No Ventilation ?-Thermal Run Away-Temperature Instability- Failure and Shorten service cycle operating above 25C- Cell reversal- Low discharge rate- Bulky and Heavy- Environmental hazardousLead is a toxic heavy metal and in most cases regulated as a hazardous waste.
  21. 21. What is C rateThe charge and discharge current of a battery is measured in C-rateCurrent C Rate Discharge Time(min)5 0.05 20 hr (1200)10 0.1 10 hr (600)20 0.2 5 hr (300)30 0.3 3.3 hr (200)40 0.4 2.5 hr (150)50 0.5 2.0 hr (120)100 1 1.0 hr (60)200 2 0.50 hr (30)300 3 0.33 hr (20)400 4 0.25 hr (15)500 5 0.20 hr (12)Discharge Time = Rated Ah of Battery(used time) Discharge CurrentC rate = Rated Ah battery / 1 hour 100 Ah cel & current = 100 Amp = 1C
  22. 22. Beware: The Peukert Effect of Lead Acid BatteryWhat You See is NOT What You GetVminPE0,05 C = 20 uurreferentie1C = 1 uur ?1C = 25 minVnom
  23. 23. C-rateDischargeCurrent(A)Lead Acid, 100Ah Kokum SLPB, 100AhDischarge capacity (Ah)Related capacity(%)Discharge capacity (Ah)Related capacity(%)0.05C 5A 100Ah 100% 100Ah 100%0.1C 10A 88Ah (10A*8.8hr) 88% 100Ah (10A*10hr) 100%0.2C 20A 76Ah (20A*3.8hr) 76% 100Ah (20A*5hr) 100%0.4C 40A 64Ah (40A*1.6hr) 64% 100Ah (40A*2.5hr) 100%0.6C 60A 49.8Ah (60A*0.83hr) 49.8% 100Ah (60A*1.66hr) 100%1C 100A 42Ah (100A*0.42hr) 42% 100Ah (100A*1hr) 100%Discharging at 1C deflates the overall performance of Lead AcidBattery by 58%2C 200A 40Ah (200A*0.20hr) 40% 98.5Ah(200A*0.492hr) 98.5%3C 300A 36Ah (300A*0.12hr) 36% 96.5Ah(300A*0.322hr) 96.5%5C 500A 33.3Ah (500A*0.06hr) 33.3% 94.3Ah(500A*0.189hr) 94.3%7C 700A 8.5Ah (700A*0.0122hr) 8.5% 91.2Ah(700A*0.130hr) 91.2%10C 1000A 1.38Ah (1000A*0.00138hr) 1.38% 88.7Ah(1000A*0.089hr) 88.7%Actual Lab Test Result of a 100Ah of Lead acid battery vs. Kokum SLPBwith Peukert Effect on Capacity and Discharge TimeThe Discharging Behavior Of Lead Acid Battery C rate Vs Capacity
  24. 24. Van (k)Ah naar (k)WhMeestal wordt de capaciteit van accus opgegeven in Ah (Ampère uur)Dat zegt echter niets over de opgeslagen energie maar alleen iets over de laad enontlaad mogelijkheden. Bij serie schakelen van cellen verandert de Ah waarde niet maarde energie inhoud wel.Voor EV gebruik is de energie inhoud veel belangrijker en die wordt gemeten in (k)Wh.Normaal gesproken is de Energie = Stroom (A) * Spanning (V)Dus je zou kunnen zeggen energie inhoud = Ah waarde * celspanning = AVh = Wh.Zo eenvoudig is het niet want welke V geldt ? Vref ? Vmin ?Zoals altijd ligt de waarheid ergens tussenin.Voor een bepaalde cel met Vref = 4,2V en Vmin = 3,0V en daarmee Vgem = 3,6VDus één cel van 100Ah heeft energie inhoud ongeveer 360 WhMaar 10 cellen van 10Ah in serie hebben ook een energie inhoud van 360 Wh terwijl delaad en ontlaad karakteristieken heel anders zijn.
  25. 25. Laden volgens het CCCV principeTijd (uur)122010CLoodaccu 1/20 C continu0,5 C1 C2 CLaadprincipesEerst constante stroom C rateBij bereiken referentie spanning dezeconstant houden tot stroom isafgenomen tot 1/20 CVrefVstartConstante stroomC rateConstante spanningVrefStroom afgenomentot 1/20 CVmintijd
  26. 26. 1,0001001010 100101,0001001010011PowerDensity(W/kg)Energy Density(Wh/kg)PowerDensity(W/lb)Energy Density(Wh/lb)Lead-Acid(1967)High power and/orbipolar lead-acid(1995)Ni-CdSodiumSulfurRange:80km 160km 320km 640km96km/hr64km/hr32km/hrLong-termMiddle-termLi-ionNi-MHZn-Br2USABCUSABCSLPBEnergy Density & Power Density
  27. 27. LiCoO2 + C6 Li 1-x CoO2 + C6LixChargeDischargeKokam Superior Lithium Polymer BatterySLPB technology contains no metal lithium.Rather, only a Li-ion passes between the positiveand negative poles leaving the cathode and anodematerials unchanged the principle operation isfundamentally different and safer from that of are-chargeable lithium metal battery.The separator is a microporous filmacts as safety gates stoppingthe avalanche of Li-ions under abnormalstage like short circuit, operating underextreme high temp. This prevent the batteryfrom thermal run-away causing fire or evenexplosionSafe, Highly Efficient, High Power, High Energy, Lightweight and Small and GreenLiCoO2 C6LiKokum SLPB104330 3.7V 48mAh 0.8mm thickness weight 2g
  28. 28. Highlights of the High5ive battery cell technology:•4.7V chemistry•300-350 Wh/kg•Over 2,000 cycles•Inherently safer relative to the best competing cells•Up to 40% savings in battery cost•Up to 50% savings in weight•Enables twice the driving rangeTechnical overview of High5ive cell technology
  29. 29. Nanowire batteryA nanowire battery is a lithium-ion battery and consists of a stainless steel anodecovered in silicon nanowires to replace the traditional graphite anode. Silicon, whichstores ten times more lithium than graphite, allows a far greater energy density on theanode, thus reducing the mass of the battery. The high surface area further allows forfast charging and discharging.Traditional silicon anodes were researched and dismissed due to the tendency of siliconto crack and become useless as it swelled with lithium during operation. The nanowires,on the other hand, do not suffer from this flaw. According to Dr. Cui, the battery onlyreached 10x density on the first charge and leveled out at 8x density on subsequentcharges. Since this is only an anode advancement, an equivalent cathode advancementwould be needed to get the full energy storage density improvements; however,lightening the anode alone would, according to the team, lead to "several" times betterenergy density.Commercialization is expected to take approximately five years[1], with the batteriescosting similar or less per watt hour than conventional lithium-ion. The next milestone,lifecycle testing, should be completed, and the team expects to get at least a thousandcycles out of the battery. These batteries could create revolutionary improvements inmobile electronics and electric vehicles.
  30. 30. Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium wasinvestigated. The influences of doping Y on structure, morphology andelectrochemical performance of cathode materials were investigatedsystematically. The results indicated that the mechanisms of Y doping in threecathode materials were different, so the influences on the material performancewere different. The crystal structure of the three materials was not changed byY doping. However, the crystal parameters were influenced. The crystalparameters of LiMn2O4 became smaller, and the interlayer distance of (100)crystal plane of Li1+xV3O8 was lengthened after Y doping. The grain size of Y-doped LiFePO4 became smaller and grain morphology became more regularthan that of undoped LiFePO4. It indicated that Y doping had no influence oncrystal particle and morphology of LiMn2O4. The morphology of Li1+xV3O8became irregular and its size became larger with the increase of Y. ForLiFePO4 and Li1+xV3O8, both the initial discharge capacities and the cyclicperformance were improved by Y doping. For LiMn2O4, the cyclic performancebecame better and the initial discharge capacities declined with increasing Ydoping.Yttrium battery
  31. 31. References• http://www.actacell.com• http://www.calcars.org/calcars-news/976.html• http://earth2tech.com/2008/07/23/battery-startup-actacell-charges-up-with-google-dfj/• Welcome to Amco Batteries Limited• Electro Energy: Empowering the Future of Energy• Air Force contract to continue work on high energy battery awarded to Electro Energy -AutoblogGreen• Welcome to Electrovaya• http://www.saftbatteries.com/SAFT/UploadedFiles/PressOffice/2008/JCS-08-06_eng.pdf• TOYOTA: News Releases• http://mvp090-1.104web.com.tw/cetacean/front/bin/home.phtml• http://evtransportal.com/batterycompanies.html• Bosch, Samsung join forces for lithium ion batteries | Power Management DesignLine Europe• http://blog.wired.com/cars/2008/09/hyundai-going-e.html• http://blog.wired.com/cars/2008/09/hyundai-going-e.html• http://www.trojanbattery.com• Power Systems Research
  32. 32. lithium metal polymer DBM Energy Lekker Energie Audi A2 Kolibri AlphaPolymer Technology.mp4
  33. 33. 1 . Impact Tester2 . Penetration Tester3 . Heating Tester4 . Crush Tester5 . Overcharge / Reverse charge Tester6 . External short Tester7 . Drop Tester (KERI)8 . Vibration TesterSafety Test Procedure & Equipments
  34. 34. Accu testen
  35. 35. LaadvermogenTank 60 l voltanken in 1 minuutGoed voor 780 km (1 : 13)60 * 10kWh / 1 minuut = 36 MWattStel dat je evenveel km elektrisch in dezelfde tijd wilt laden!Aanname dat de EV 7 km per kWh rijdtBatterij 100 kWh (700km) laden in 1 minuutBij 500V systeem is datBatterij 36 kWh (250 km) laden in 1 minuutBij 500V systeem is dat6 MWatt12 kA2,2 MWatt4,3 kABeide zijn onrealistischDe 1 minuut tank tijd en de vooraf wachttijd ed enachteraf administratieve afhandeling zorgen ervoor datde totale tijd ca. 5 minuten wordt. Dat vind ik alsconsument aanvaardbaar, maar langer niet. Dan begintongeduld.
  36. 36. Tank 60 l voltanken in 1 minuutGoed voor 780 km (1 : 13)60 * 10kWh / 1 minuut = 36 MWattStel dat je evenveel km elektrisch in dezelfde tijd wilt laden!Aanname dat de EV 7 km per kWh rijdtBatterij 100 kWh (700km) laden in 10 minutenBij 500V systeem is datBatterij 36 kWh (250 km) laden in 10 minutenBij 500V systeem is dat600 kWatt1,2 kA216 kWatt432 ABeide zijn onrealistischLaadvermogen
  37. 37. Elektrische auto’s alleen voor korte afstanden?De ENEXIS EV Vloot heeft inmiddels meer dan 1.000.000 km afgelegdDat is gemiddeld zo’n 25.000 km per auto/jaarEnkele hebben zelfs meer al dan 100.000 km geredenIntegendeel!

×