Специальная Теория Относительности: лекция Нилба

Ïðîñòðàíñòâî è âðåìÿ,
âìåñòå âçÿòûå, ñóòü ÷èñòûå
ôîðìû âñÿêîãî
÷óâñòâåííîãî
ñîçåðöàíèÿ. . . Òîëüêî
ÿâëåíèÿ ñóòü ñôåðà
ïðèëîæåíèÿ ïîíÿòèé
ïðîñòðàíñòâà è âðåìåíè.
È. Êàíò, Êðèòèêà ÷èñòîãî
ðàçóìà. 1781.
Ñîáûòèå õàðàòåðèçóåòñÿ ïîëîæåíèåì è âðåìåíåì.
Êîîðäèíàòû è âðåìÿ ñîáûòèÿ îïðåäåëÿþòñÿ ýòàëîííûìè
èçìåðèòåëüíûìè ïðèáîðàìè: ëèíåéêàìè è ÷àñàìè,
íåïîäâèæíûìè äðóã îòíîñèòåëüíî äðóãà. Ñîâîêóïíîñòü
ïðèáîðîâ, èñïîëüçóåìûõ äëÿ èçìåðåíèÿ êîîðäèíàò è âðåìåíè 
ñèñòåìà îòñ÷¼òà.
Ñèñòåìû îòñ÷¼òà. Êîîðäèíàòû. Äåêàðòîâû êîîðäèíàòû.
Äåêàðòîâà ïðÿìîóãîëüíàÿ ñèñòåìà êîîðäèíàò:
Óíèòàðíîñòü è ïîñòîÿíñòâî ìåòðè÷åñêîãî òåíçîðà
Ïðîñòðàíñòâåííûå êîîðäèíàòû:
x = (x, y, z)
Âðåìåííàÿ êîîðäèíàòà: t
Ñîâîêóïíîñòü êîîðäèíàò
ïîëîæåíèÿ è âðåìåíè ñîáûòèÿ:
xi = (t, x)
Ïîñòóëàòû òåîðèè îòíîñèòåëüíîñòè
Ñóùåñòâóþò ñèñòåìû îòñ÷¼òà, íàçûâàåìûå
èíåðöèàëüíûìè, â êîòîðûõ âñå ôèçè÷åñêèå çàêîíû èìåþò
îäèíàêîâûé âèä. Èíåðöèàëüíîé ÿâëÿåòñÿ ëþáàÿ ñèñòåìà
îòñ÷¼òà, äâèæóùàÿñÿ ïðÿìîëèíåéíî è ðàâíîìåðíî
îòíîñèòåëüíî äðóãîé èíåðöèàëüíîé ñèñòåìû îòñ÷¼òà.
Ñêîðîñòü ñâåòà ïîñòîÿííà âî âñåõ ñèñòåìàõ îòñ÷¼òà.
Ïðîñòðàíñòâî òð¼õìåðíî, îäíîðîäíî è èçîòðîïíî. Âðåìÿ
îäíîìåðíî è îäíîðîäíî.
Ñèñòåìà îòñ÷¼òà. Ñèíõðîíèçàöèÿ ÷àñîâ.
Ïðè êîíå÷íîé ïîñòîÿííîé ñêîðîñòè ðàñïðîñòðàíåíèÿ
ñèãíàëîâ, ôèêñèðóåìîå íà ÷àñàõ âðåìÿ ñîáûòèÿ çàâèñèò
îò ðàññòîÿíèÿ ìåæäó ÷àñàìè è ïîëîæåíèåì ñîáûòèÿ. Äëÿ
ââåäåíèÿ åäèíñòâà â çíà÷åíèå âðåìåíè ñîáûòèÿ, èç
ïîêàçàíèé ÷àñîâ âû÷èòàþò âðåìÿ ðàñïðîñòðàíåíèÿ
ñèãíàëà îò òî÷êè, ãäå ïðîèçîøëî ñîáûòèå, äî òî÷êè åãî
íàáëþäåíèÿ.  òàêîì ñëó÷àå, ïðàâèëüíîå âðåìÿ ñîáûòèÿ
ïîêàçûâàþò ÷àñû, ðàñïîëîæåííûå â òî÷êå ñîáûòèÿ.
Ïðåîáðàçîâàíèÿ äåêàðòîâûõ ïðÿìîóãîëüíûõ êîîðäèíàò
Îáùåå ïðåîáðàçîâàíèÿ êîîðäèíàò â ïîêîìïîíåíòíîé çàïèñè
t = t(t , x , y , z )
x = x(t , x , y , z )
y = y(t , x , y , z )
z = z(t , x , y , z )
Ñîêðàù¼ííî, èñïîëüçóÿ îáîçíà÷åíèå 4-âåêòîðà
xi = λi (xj )
Òðåáîâàíèå îäíîðîäíîñòè ïðîñòðàíñòâà è âðåìåíè
ýêâèâàëåíòíî ïîñòîÿíñòâó ìåòðè÷åñêîãî òåíçîðà.
Ïîñòîÿíñòâî ìåòðè÷åñêîãî òåíçîðà ñîõðàíÿåòñÿ ïðè
ëèíåéíîì ïðåîáðàçîâàíèè êîîðäèíàò:
xi = λij xj + x
(0)
j (1)
Ïðåîáðàçîâàíèÿ Ëîðåíöà
Ïðåîáðàçîâàíèÿìè Ëîðåíöà íàçûâàþòñÿ ïðåîáðàçîâàíèÿ
ïðÿìîóãîëüíûõ äåêàðòîâûõ êîîðäèíàò ïðè ïåðåõîäå ìåæäó
èíåðöèàëüíûìè ñèñòåìàìè îòñ÷¼òà ñ îáùèì íà÷àëîì
êîîðäèíàò, íàïðàâëåíèåì âðåìåíè è îðèåíòàöèåé êîîðäèíàòíûõ
îñåé.
 ñèëó îáùåãî íà÷àëà êîîðäèàíò, ïðåîáðàçîâàíèÿ Ëîðåíöà
èìåþò âèä
xi = λij (v)xj (2)
 ñàìîì îáùåì âèäå ìàòðèöà ïðåîáðàçîâàíèÿ Ëîðåíöà èìååò
âèä
Λ(v) =




λtt(v) λtx (v) λty (v) λtz(v)
λxt(v) λxx (v) λxy (v) λxz(v)
λyt(v) λyx (v) λyy (v) λyz(v)
λzt(v) λzx (v) λzy (v) λzz(v)




Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Ñèììåòðèÿ
ïðîñòðàíñòâà
Ñèììåòðèÿ ïðîñòðàíñòâà. Â îäíîðîäíîì è èçîòîðïíîì
ïðîñòðàíñòâå è îäíîðîäíîì âðåìåíè ñóùåñòâóåò ëèøü äâà
4-õìåðíûõ èíâàðèàíòíûõ òåíçîðà:
E =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 , T =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Âåêòîð ñêîðîñòè îäíîé ñèñòåìû îòñ÷¼òà îòíîñèòåëüíî äðóãîé
äîáàâëÿåò åù¼ òðè òåíçîðà:
Mtv =




0 vx vy vz
0 0 0 0
0 0 0 0
0 0 0 0



 , Mvt =




0 0 0 0
vx 0 0 0
vy 0 0 0
vz 0 0 0



 ,
Mvv =




0 0 0 0
0 vx vx vx vy vx vz
0 vy vx vy vy vy vz
0 vzvx vzvy vzvz




Ìàòðèöà Λ äîëæíà áûòü ëèíåéíîé êîìáèíàöèåé ýòèõ ïÿòè
ìàòðèö:
Λ = α(v)T + β(v)E + γ1(v)Mtv + γ2(v)Mvt + δ(v)Mvv
Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Îáðàòíîå
ïðåîáðàçîâàíèå
Îáðàòíîå ïðåîáðàçîâàíèå ê ïðåîáðàçîâàíèÿì Ëîðåíöà
òàêæå ÿâëÿåòñÿ ïðåîáðàçîâàíèåì Ëîðåíöà, íî ñ îáðàòíîé
ñêîðîñòüþ:
Λ−1
(v) = Λ(−v)
Èíâàðèàíòíîñòü ïîïåðå÷íûõ êîîðäèíàò. Ïðè
ïðåîáðàçîâàíèè 4-õ âåêòîðà (0, x), x ⊥ v, ïîëó÷àåì
Λ(v)x = β(v)Ex = β(v)x
Îáðàòíîå ïðåîáðàçîâàíèå
Λ(−v)(β(v)x) = β(v)Eβ(v)x = (β(v))2
x
Îòñþäà β(v) = 1 èëè β(v) = −1. Ïðè v = 0, β(v) = 1. Èç
íåïðåðûâíîñòè β(v), β(v) = 1 âñþäó.
Èíâàðèàíòíîå ïîäïðîñòðàíñòâî ìàòðèöû ïðåîáðàçîâàíèÿ
Ëîðåíöà
 ñèëó îòñóòñòâèÿ äðóãèõ âûäåëåííûõ íàïðàâëåíèé, êðîìå
íàïðàâëåíèÿ ñêîðîñòè, 4-âåêòîðà, êîîðäèàíòíàÿ ÷àñòü êîòîðûõ
ïàðàëëåëüíà íàïðàâëåíèþ ñêîðîñòè, îáðàçóþò èíâàðèàíòíîå
ïîäïðîñòðàíñòâî ìàòðèöû Λ(v).
Ïðåäñòàâëÿÿ ëþáîé 4-âåêòîð x â âèäå
x = x + x⊥
ãäå x ñîäåðæèò âðåìåííóþ êîîðäèíàòó è ïàðàëëåëüíóþ
íàïðàâëåíèþ ñêîðîñòè êîìïîíåíòó ïðîñòðàíñòâåííûõ
êîîðäèíàò ñîáûòèÿ, à x⊥ - ïåðïåíäèêóëÿðíóþ êîìïîíåíòó
ïðîñòðàíñòâåííûõ êîîðäèíàò ñîáûòèÿ, èìååì.
Λ(v)x = Λ(v)x + Λ(v)x⊥ = Λ(v)x + x⊥
Ñîêðàù¼ííàÿ ôîðìà ìàòðèöû ïðåîáðàçîâàíèÿ Ëîðåíöà
 èíâàðèàíòíîì ïîäïðîñòðàíñòâå ââåä¼ì êîîðäèíàòû:
t  âðåìåííàÿ êîîðäèàíòà
x  ïðîñòðàíñòâåííàÿ êîîðäèíàòà âäîëü íàïðàâëåíèÿ
ñêîðîñòè
 ýòèõ íîâûõ êîîðäèíàòàõ ñîîòâåòñòâóþùàÿ ìàòðèöà ïåðåõîäà
Λ(v) èìååò âèä
Λ(v) =
λtt λtx
λxt λxx
(3)
Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Îïðåäåëåíèå
ñêîðîñòè
Îïðåäåëåíèå ñêîðîñòè. Ðàññìîòðèì òåëî, äâèæóùååñÿ
ñî ñêîðîñòüþ v îòíîñèòåëüíî ñèñòåìû îòñ÷¼òà K. Â
ñèñòåìå îòñ÷¼òà K â ìîìåíò âðåìåíè t åãî
ïðîñòðàíñòâåííîå ïîëîæåíèå áóäåò îïðåäåëÿòüñÿ
âûðàæåíèåì
x(t) = vt
Êîîðäèíàòàì (t, vt) â ñèñòåìå îòñ÷¼òà K áóäóò
ñîîòâåñòâîâàòü êîîðäèíàòû (t , 0) â ñèñòåìå îòñ÷¼òà K ,
ñâÿçàííîé ñ ñàìèì ýòèì òåëîì.  òàêîì ñëó÷àå
t = λttt
vt = λxtt
Òàêèì îáðàçîì, ïîëó÷àåì
λxt = vλtt
Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Èíâàðèàíòíîñòü
ñêîðîñòè ñâåòà
Èíâàðèàíòíîñòü ñêîðîñòè ñâåòà. Ïðè äâèæåíèè ñâåòà èç
íà÷àëà êîîðäèíàò çàâèñèìîñòü ïðîñòðàíñòâåííîé
êîîðäèíàòû îò âðåìåííîé èìååò âèä
x (t) = ct
 äðóãîé èíåðöèàëüíîé ñèñòåìå îòñ÷¼òà
x(t) = ct
Äëÿ ìàòðèöû Λ(v) â òàêîì ñëó÷àå âûïîëíÿåòñÿ
t = λttt + λtx ct
ct = λxtt + λxx ct
Ðàçðåøàÿ ýòè óðàâíåíèÿ îòíîñèòåëüíî êîìïîíåíò λij
ïîëó÷àåì
cλtt + c2
λtx = λxt + cλxx
Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Îïðåäåëèòåëü
ìàòðèöû
Îïðåäåëèòåëü ìàòðèöû. Ó÷èòûâàÿ ñâîéñòâî
îïðåäåëèòåëÿ
|Λ−1
| =
1
|Λ|
ìîæíî ïîëó÷èòü âûðàæåíèå ñâÿçûâàþùåå îïðåäåëèòåëü
ïðåîáðàçîâàíèÿ
|Λ(v)| =
1
|Λ(−v)|
Îïðåäåëèòåëü - ñêàëÿðíàÿ âåëè÷èíà è çàâèñèò ëèøü îò
âåëè÷èíû ñêîðîñòè, íî íå îò íàïðàâëåíèÿ. Îòñþäà
|Λ(v)| = |Λ(v)| = |Λ(−v)| =
1
|Λ(v)|
Îêîí÷àòåëüíî, |Λ(v)| = λttλxx − λxtλtx = 1
Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. ×¼òíîñòü
×¼òíîñòü. Êàê è â ïîëíîé 4-õìåðíîé ôîðìå, ñîêðàù¼ííàÿ
ôîðìà ìàòðèöû ïðåîáðàçîâàíèÿ Ëîðåíöà ìîæåò ñîñòîÿòü
ëèøü èç ñóììû 5 ñëàãàåìûõ:
Λ = α(v)T + E + γ1(v)Mtv + γ2(v)Mvt + δ(v)Mvv
E =
0 0
0 1
, T =
1 0
0 0
Mtv =
0 vx
0 0
, Mvt =
0 0
vx 0
, Mvv =
0 0
0 vx vx
Òàêèì îáðàçîì, äèàãîíàëüíûå ýëåìåíòû ìàòðèöû äîëæíû
áûòü ÷¼òíûìè ôóíêöèÿìè v, à íåäèàãîëüíûå  íå÷¼òíûìè.
Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. ×¼òíîñòü è îáðàòíàÿ
ìàòðèöà
×¼òíîñòü è îáðàòíàÿ ìàòðèöà. Çàïèøåì ïîêîìïîíåíòíî
âûðàæåíèå
Λ−1
(v) = Λ(−v)
λtt(v) = λxx (−v)
λtx (v) = −λtx (−v)
λxt(v) = −λxt(−v)
λxx (v) = λtt(−v)
Ó÷èòûâàÿ ÷¼òíîñòü ìàòðè÷íûõ ýëåìåíòîâ λi j ïî v, èìååì
λtt(v) = λxx (v)
ßâíûé âèä ìàòðèöû ïðåîáðàçîâàíèÿ Ëîðåíöà
Ðåøàÿ ðàíåå ïîëó÷åííûå óðàâíåíèÿ
cλtt + c2
λtx = λxt + cλxx
λttλxx − λxtλtx = 1
λtt = λxx
λxt = vλtt
ïîëó÷àåì
Λ(v) =



1q
1− v2
c2
v
c2
q
1− v2
c2
vq
1− v2
c2
1q
1− v2
c2



1 of 17

More Related Content

Recently uploaded

ODS.pdfODS.pdf
ODS.pdfZAR CARI MOGRO
273 views21 slides
BRUJULA.docxBRUJULA.docx
BRUJULA.docxAnaRiascos5
5 views1 slide

Recently uploaded(12)

ODS.pdfODS.pdf
ODS.pdf
ZAR CARI MOGRO273 views
BRUJULA.docxBRUJULA.docx
BRUJULA.docx
AnaRiascos55 views
TORTUGA 9-6.pdfTORTUGA 9-6.pdf
TORTUGA 9-6.pdf
AikoSaoriLoboaOsorno5 views
BRUJULA 9-6.pdfBRUJULA 9-6.pdf
BRUJULA 9-6.pdf
AikoSaoriLoboaOsorno5 views
Victoria Hospital.pdfVictoria Hospital.pdf
Victoria Hospital.pdf
raj2002pal7 views
Документ.pdfДокумент.pdf
Документ.pdf
ssuser46127c8 views
Документ0013.pdfДокумент0013.pdf
Документ0013.pdf
ssuser46127c6 views
Minto Ophthalmic Hospital Minto Ophthalmic Hospital
Minto Ophthalmic Hospital
ramyaramesh731711 views
Minto Ophthalmic Hospital Minto Ophthalmic Hospital
Minto Ophthalmic Hospital
ramyaramesh73175 views
HISTORIANEWS.docx (2).pdfHISTORIANEWS.docx (2).pdf
HISTORIANEWS.docx (2).pdf
HectorMorenoGarcia16 views
نعم نستطيع.pdfنعم نستطيع.pdf
نعم نستطيع.pdf
Rawda Eada21 views

Featured(20)

ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
Alireza Esmikhani30.2K views
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
Project for Public Spaces & National Center for Biking and Walking6.9K views
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
Erica Santiago25K views
9 Tips for a Work-free Vacation9 Tips for a Work-free Vacation
9 Tips for a Work-free Vacation
Weekdone.com7.1K views
I Rock Therefore I Am. 20 Legendary Quotes from PrinceI Rock Therefore I Am. 20 Legendary Quotes from Prince
I Rock Therefore I Am. 20 Legendary Quotes from Prince
Empowered Presentations142.8K views
How to Map Your FutureHow to Map Your Future
How to Map Your Future
SlideShop.com275.1K views
Read with Pride | LGBTQ+ ReadsRead with Pride | LGBTQ+ Reads
Read with Pride | LGBTQ+ Reads
Kayla Martin-Gant1.1K views

Специальная Теория Относительности: лекция Нилба

  • 1. Ïðîñòðàíñòâî è âðåìÿ, âìåñòå âçÿòûå, ñóòü ÷èñòûå ôîðìû âñÿêîãî ÷óâñòâåííîãî ñîçåðöàíèÿ. . . Òîëüêî ÿâëåíèÿ ñóòü ñôåðà ïðèëîæåíèÿ ïîíÿòèé ïðîñòðàíñòâà è âðåìåíè. È. Êàíò, Êðèòèêà ÷èñòîãî ðàçóìà. 1781. Ñîáûòèå õàðàòåðèçóåòñÿ ïîëîæåíèåì è âðåìåíåì. Êîîðäèíàòû è âðåìÿ ñîáûòèÿ îïðåäåëÿþòñÿ ýòàëîííûìè èçìåðèòåëüíûìè ïðèáîðàìè: ëèíåéêàìè è ÷àñàìè, íåïîäâèæíûìè äðóã îòíîñèòåëüíî äðóãà. Ñîâîêóïíîñòü ïðèáîðîâ, èñïîëüçóåìûõ äëÿ èçìåðåíèÿ êîîðäèíàò è âðåìåíè ñèñòåìà îòñ÷¼òà.
  • 2. Ñèñòåìû îòñ÷¼òà. Êîîðäèíàòû. Äåêàðòîâû êîîðäèíàòû. Äåêàðòîâà ïðÿìîóãîëüíàÿ ñèñòåìà êîîðäèíàò: Óíèòàðíîñòü è ïîñòîÿíñòâî ìåòðè÷åñêîãî òåíçîðà Ïðîñòðàíñòâåííûå êîîðäèíàòû: x = (x, y, z) Âðåìåííàÿ êîîðäèíàòà: t Ñîâîêóïíîñòü êîîðäèíàò ïîëîæåíèÿ è âðåìåíè ñîáûòèÿ: xi = (t, x)
  • 3. Ïîñòóëàòû òåîðèè îòíîñèòåëüíîñòè Ñóùåñòâóþò ñèñòåìû îòñ÷¼òà, íàçûâàåìûå èíåðöèàëüíûìè, â êîòîðûõ âñå ôèçè÷åñêèå çàêîíû èìåþò îäèíàêîâûé âèä. Èíåðöèàëüíîé ÿâëÿåòñÿ ëþáàÿ ñèñòåìà îòñ÷¼òà, äâèæóùàÿñÿ ïðÿìîëèíåéíî è ðàâíîìåðíî îòíîñèòåëüíî äðóãîé èíåðöèàëüíîé ñèñòåìû îòñ÷¼òà. Ñêîðîñòü ñâåòà ïîñòîÿííà âî âñåõ ñèñòåìàõ îòñ÷¼òà. Ïðîñòðàíñòâî òð¼õìåðíî, îäíîðîäíî è èçîòðîïíî. Âðåìÿ îäíîìåðíî è îäíîðîäíî.
  • 4. Ñèñòåìà îòñ÷¼òà. Ñèíõðîíèçàöèÿ ÷àñîâ. Ïðè êîíå÷íîé ïîñòîÿííîé ñêîðîñòè ðàñïðîñòðàíåíèÿ ñèãíàëîâ, ôèêñèðóåìîå íà ÷àñàõ âðåìÿ ñîáûòèÿ çàâèñèò îò ðàññòîÿíèÿ ìåæäó ÷àñàìè è ïîëîæåíèåì ñîáûòèÿ. Äëÿ ââåäåíèÿ åäèíñòâà â çíà÷åíèå âðåìåíè ñîáûòèÿ, èç ïîêàçàíèé ÷àñîâ âû÷èòàþò âðåìÿ ðàñïðîñòðàíåíèÿ ñèãíàëà îò òî÷êè, ãäå ïðîèçîøëî ñîáûòèå, äî òî÷êè åãî íàáëþäåíèÿ.  òàêîì ñëó÷àå, ïðàâèëüíîå âðåìÿ ñîáûòèÿ ïîêàçûâàþò ÷àñû, ðàñïîëîæåííûå â òî÷êå ñîáûòèÿ.
  • 5. Ïðåîáðàçîâàíèÿ äåêàðòîâûõ ïðÿìîóãîëüíûõ êîîðäèíàò Îáùåå ïðåîáðàçîâàíèÿ êîîðäèíàò â ïîêîìïîíåíòíîé çàïèñè t = t(t , x , y , z ) x = x(t , x , y , z ) y = y(t , x , y , z ) z = z(t , x , y , z ) Ñîêðàù¼ííî, èñïîëüçóÿ îáîçíà÷åíèå 4-âåêòîðà xi = λi (xj ) Òðåáîâàíèå îäíîðîäíîñòè ïðîñòðàíñòâà è âðåìåíè ýêâèâàëåíòíî ïîñòîÿíñòâó ìåòðè÷åñêîãî òåíçîðà. Ïîñòîÿíñòâî ìåòðè÷åñêîãî òåíçîðà ñîõðàíÿåòñÿ ïðè ëèíåéíîì ïðåîáðàçîâàíèè êîîðäèíàò: xi = λij xj + x (0) j (1)
  • 6. Ïðåîáðàçîâàíèÿ Ëîðåíöà Ïðåîáðàçîâàíèÿìè Ëîðåíöà íàçûâàþòñÿ ïðåîáðàçîâàíèÿ ïðÿìîóãîëüíûõ äåêàðòîâûõ êîîðäèíàò ïðè ïåðåõîäå ìåæäó èíåðöèàëüíûìè ñèñòåìàìè îòñ÷¼òà ñ îáùèì íà÷àëîì êîîðäèíàò, íàïðàâëåíèåì âðåìåíè è îðèåíòàöèåé êîîðäèíàòíûõ îñåé.  ñèëó îáùåãî íà÷àëà êîîðäèàíò, ïðåîáðàçîâàíèÿ Ëîðåíöà èìåþò âèä xi = λij (v)xj (2)  ñàìîì îáùåì âèäå ìàòðèöà ïðåîáðàçîâàíèÿ Ëîðåíöà èìååò âèä Λ(v) =     λtt(v) λtx (v) λty (v) λtz(v) λxt(v) λxx (v) λxy (v) λxz(v) λyt(v) λyx (v) λyy (v) λyz(v) λzt(v) λzx (v) λzy (v) λzz(v)    
  • 7. Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Ñèììåòðèÿ ïðîñòðàíñòâà Ñèììåòðèÿ ïðîñòðàíñòâà. Â îäíîðîäíîì è èçîòîðïíîì ïðîñòðàíñòâå è îäíîðîäíîì âðåìåíè ñóùåñòâóåò ëèøü äâà 4-õìåðíûõ èíâàðèàíòíûõ òåíçîðà: E =     0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1     , T =     1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    
  • 8. Âåêòîð ñêîðîñòè îäíîé ñèñòåìû îòñ÷¼òà îòíîñèòåëüíî äðóãîé äîáàâëÿåò åù¼ òðè òåíçîðà: Mtv =     0 vx vy vz 0 0 0 0 0 0 0 0 0 0 0 0     , Mvt =     0 0 0 0 vx 0 0 0 vy 0 0 0 vz 0 0 0     , Mvv =     0 0 0 0 0 vx vx vx vy vx vz 0 vy vx vy vy vy vz 0 vzvx vzvy vzvz     Ìàòðèöà Λ äîëæíà áûòü ëèíåéíîé êîìáèíàöèåé ýòèõ ïÿòè ìàòðèö: Λ = α(v)T + β(v)E + γ1(v)Mtv + γ2(v)Mvt + δ(v)Mvv
  • 9. Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Îáðàòíîå ïðåîáðàçîâàíèå Îáðàòíîå ïðåîáðàçîâàíèå ê ïðåîáðàçîâàíèÿì Ëîðåíöà òàêæå ÿâëÿåòñÿ ïðåîáðàçîâàíèåì Ëîðåíöà, íî ñ îáðàòíîé ñêîðîñòüþ: Λ−1 (v) = Λ(−v) Èíâàðèàíòíîñòü ïîïåðå÷íûõ êîîðäèíàò. Ïðè ïðåîáðàçîâàíèè 4-õ âåêòîðà (0, x), x ⊥ v, ïîëó÷àåì Λ(v)x = β(v)Ex = β(v)x Îáðàòíîå ïðåîáðàçîâàíèå Λ(−v)(β(v)x) = β(v)Eβ(v)x = (β(v))2 x Îòñþäà β(v) = 1 èëè β(v) = −1. Ïðè v = 0, β(v) = 1. Èç íåïðåðûâíîñòè β(v), β(v) = 1 âñþäó.
  • 10. Èíâàðèàíòíîå ïîäïðîñòðàíñòâî ìàòðèöû ïðåîáðàçîâàíèÿ Ëîðåíöà  ñèëó îòñóòñòâèÿ äðóãèõ âûäåëåííûõ íàïðàâëåíèé, êðîìå íàïðàâëåíèÿ ñêîðîñòè, 4-âåêòîðà, êîîðäèàíòíàÿ ÷àñòü êîòîðûõ ïàðàëëåëüíà íàïðàâëåíèþ ñêîðîñòè, îáðàçóþò èíâàðèàíòíîå ïîäïðîñòðàíñòâî ìàòðèöû Λ(v). Ïðåäñòàâëÿÿ ëþáîé 4-âåêòîð x â âèäå x = x + x⊥ ãäå x ñîäåðæèò âðåìåííóþ êîîðäèíàòó è ïàðàëëåëüíóþ íàïðàâëåíèþ ñêîðîñòè êîìïîíåíòó ïðîñòðàíñòâåííûõ êîîðäèíàò ñîáûòèÿ, à x⊥ - ïåðïåíäèêóëÿðíóþ êîìïîíåíòó ïðîñòðàíñòâåííûõ êîîðäèíàò ñîáûòèÿ, èìååì. Λ(v)x = Λ(v)x + Λ(v)x⊥ = Λ(v)x + x⊥
  • 11. Ñîêðàù¼ííàÿ ôîðìà ìàòðèöû ïðåîáðàçîâàíèÿ Ëîðåíöà  èíâàðèàíòíîì ïîäïðîñòðàíñòâå ââåä¼ì êîîðäèíàòû: t âðåìåííàÿ êîîðäèàíòà x ïðîñòðàíñòâåííàÿ êîîðäèíàòà âäîëü íàïðàâëåíèÿ ñêîðîñòè  ýòèõ íîâûõ êîîðäèíàòàõ ñîîòâåòñòâóþùàÿ ìàòðèöà ïåðåõîäà Λ(v) èìååò âèä Λ(v) = λtt λtx λxt λxx (3)
  • 12. Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Îïðåäåëåíèå ñêîðîñòè Îïðåäåëåíèå ñêîðîñòè. Ðàññìîòðèì òåëî, äâèæóùååñÿ ñî ñêîðîñòüþ v îòíîñèòåëüíî ñèñòåìû îòñ÷¼òà K.  ñèñòåìå îòñ÷¼òà K â ìîìåíò âðåìåíè t åãî ïðîñòðàíñòâåííîå ïîëîæåíèå áóäåò îïðåäåëÿòüñÿ âûðàæåíèåì x(t) = vt Êîîðäèíàòàì (t, vt) â ñèñòåìå îòñ÷¼òà K áóäóò ñîîòâåñòâîâàòü êîîðäèíàòû (t , 0) â ñèñòåìå îòñ÷¼òà K , ñâÿçàííîé ñ ñàìèì ýòèì òåëîì.  òàêîì ñëó÷àå t = λttt vt = λxtt Òàêèì îáðàçîì, ïîëó÷àåì λxt = vλtt
  • 13. Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Èíâàðèàíòíîñòü ñêîðîñòè ñâåòà Èíâàðèàíòíîñòü ñêîðîñòè ñâåòà. Ïðè äâèæåíèè ñâåòà èç íà÷àëà êîîðäèíàò çàâèñèìîñòü ïðîñòðàíñòâåííîé êîîðäèíàòû îò âðåìåííîé èìååò âèä x (t) = ct  äðóãîé èíåðöèàëüíîé ñèñòåìå îòñ÷¼òà x(t) = ct Äëÿ ìàòðèöû Λ(v) â òàêîì ñëó÷àå âûïîëíÿåòñÿ t = λttt + λtx ct ct = λxtt + λxx ct Ðàçðåøàÿ ýòè óðàâíåíèÿ îòíîñèòåëüíî êîìïîíåíò λij ïîëó÷àåì cλtt + c2 λtx = λxt + cλxx
  • 14. Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. Îïðåäåëèòåëü ìàòðèöû Îïðåäåëèòåëü ìàòðèöû. Ó÷èòûâàÿ ñâîéñòâî îïðåäåëèòåëÿ |Λ−1 | = 1 |Λ| ìîæíî ïîëó÷èòü âûðàæåíèå ñâÿçûâàþùåå îïðåäåëèòåëü ïðåîáðàçîâàíèÿ |Λ(v)| = 1 |Λ(−v)| Îïðåäåëèòåëü - ñêàëÿðíàÿ âåëè÷èíà è çàâèñèò ëèøü îò âåëè÷èíû ñêîðîñòè, íî íå îò íàïðàâëåíèÿ. Îòñþäà |Λ(v)| = |Λ(v)| = |Λ(−v)| = 1 |Λ(v)| Îêîí÷àòåëüíî, |Λ(v)| = λttλxx − λxtλtx = 1
  • 15. Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. ×¼òíîñòü ×¼òíîñòü. Êàê è â ïîëíîé 4-õìåðíîé ôîðìå, ñîêðàù¼ííàÿ ôîðìà ìàòðèöû ïðåîáðàçîâàíèÿ Ëîðåíöà ìîæåò ñîñòîÿòü ëèøü èç ñóììû 5 ñëàãàåìûõ: Λ = α(v)T + E + γ1(v)Mtv + γ2(v)Mvt + δ(v)Mvv E = 0 0 0 1 , T = 1 0 0 0 Mtv = 0 vx 0 0 , Mvt = 0 0 vx 0 , Mvv = 0 0 0 vx vx Òàêèì îáðàçîì, äèàãîíàëüíûå ýëåìåíòû ìàòðèöû äîëæíû áûòü ÷¼òíûìè ôóíêöèÿìè v, à íåäèàãîëüíûå íå÷¼òíûìè.
  • 16. Ñâîéñòâà ïðåîáðàçîâàíèÿ Ëîðåíöà. ×¼òíîñòü è îáðàòíàÿ ìàòðèöà ×¼òíîñòü è îáðàòíàÿ ìàòðèöà. Çàïèøåì ïîêîìïîíåíòíî âûðàæåíèå Λ−1 (v) = Λ(−v) λtt(v) = λxx (−v) λtx (v) = −λtx (−v) λxt(v) = −λxt(−v) λxx (v) = λtt(−v) Ó÷èòûâàÿ ÷¼òíîñòü ìàòðè÷íûõ ýëåìåíòîâ λi j ïî v, èìååì λtt(v) = λxx (v)
  • 17. ßâíûé âèä ìàòðèöû ïðåîáðàçîâàíèÿ Ëîðåíöà Ðåøàÿ ðàíåå ïîëó÷åííûå óðàâíåíèÿ cλtt + c2 λtx = λxt + cλxx λttλxx − λxtλtx = 1 λtt = λxx λxt = vλtt ïîëó÷àåì Λ(v) =    1q 1− v2 c2 v c2 q 1− v2 c2 vq 1− v2 c2 1q 1− v2 c2   