
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
In topological inference, the goal is to extract information about a shape, given only a sample of points from it. There are many approaches to this problem, but the one we focus on is persistent homology. We get a view of the data at different scales by imagining the points are balls and consider different radii. The shape information we want comes in the form of a persistence diagram, which describes the components, cycles, bubbles, etc in the space that persist over a range of different scales.
To actually compute a persistence diagram in the geometric setting, previous work required complexes of size n^O(d). We reduce this complexity to O(n) (hiding some large constants depending on d) by using ideas from mesh generation.
This talk will not assume any knowledge of topology. This is joint work with Gary Miller, Benoit Hudson, and Steve Oudot.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment