Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Project “Deep Water” (H2O integration with other deep learning libraries - Jo-Fai (Joe) Chow, H2O

444 views

Published on

The “Deep Water" project is about integrating our H2O platform with other open-source deep learning libraries such as TensorFlow, mxnet and Caffe. I will talk about the motivation and potential benefits of this project and then carry out a live demo using mxnet as the GPU backend.

Published in: Technology
  • Be the first to comment

Project “Deep Water” (H2O integration with other deep learning libraries - Jo-Fai (Joe) Chow, H2O

  1. 1. Deep Water Jo-fai (Joe) Chow Data Scientist joe@h2o.ai @matlabulous Data Science Milan Politecnico di Milano 10th October, 2016
  2. 2. Agenda • First Talk (25 mins) o About H2O.ai o Demo • A Simple Classification Task • H2O’s Web Interface o Why H2O? • Our Community • Our Customers o What’s Next? • New H2O Features • Second Talk (25 mins) o H2O for IoT • Predictive Maintenance • Anomaly Detection • H2O’s R Interface • Third Talk (25 mins) o Deep Water o Demo • H2O + mxnet on GPU • H2O’s Python Interface 2
  3. 3. Deep Learning in H2O
  4. 4. H2O Overview 4
  5. 5. A Simple Neural Network 5 Image credit: http://cs231n.github.io/
  6. 6. H2O Deep Learning in Action 6
  7. 7. H2O Deep Learning Community Quotes 7
  8. 8. Why Deep Water?
  9. 9. Deep Water: Next-Gen Deep Learning in H2O 9
  10. 10. D e e p W a t e r o p e n s t h e F l o o d g a t e s f o r S t a t e - o f - A r t D e e p L e a r n i n g 10
  11. 11. D e e p W a t e r o p e n s t h e F l o o d g a t e s f o r S t a t e - o f - A r t D e e p L e a r n i n g 11
  12. 12. Deep Water Demo
  13. 13. Deep Water Demo • H2O + mxnet o Dataset: • Cat / Dog / Mouse o H2O Python interface o mxnet GPU backend o Train a LeNet (CNN) model o Explore model in Flow • Code and Data o bit.ly/h2o_milan_1 o subfolder • deep_water_demo 13
  14. 14. Data – Cat/Dog/Mouse Images 14
  15. 15. Data - CSV 15
  16. 16. H2O + mxnet Demo
  17. 17. 17 bit.ly/h2o_milan_1 Subfolder: deep_water_demo
  18. 18. 18 “htop” (monitoring CPU/RAM) “gpustat” (monitoring GPU) “java –jar h2o.jar” H2O JVM Cluster Deep Water Edition “python demo_01_lenet.py” Python script for demo
  19. 19. 19 H2O’s Python Module Deep Water module Connect to H2O Cluster Import CSV Define LeNet model in Deep Water Train and show model
  20. 20. 20 CPU for other tasks Using GPU for LeNet model training H2O JVM Cluster “python demo_01_lenet.py” Training LeNet Model Note: H2O’s JVM on GPU
  21. 21. 21 “python demo_01_lenet.py” Showing LeNet Model
  22. 22. 22 Using Flow (localhost:54321) to explore data frame and model
  23. 23. 23 Using Flow (localhost:54321) to explore data frame and model
  24. 24. 24 Using Flow (localhost:54321) to split data and train Deep Water model
  25. 25. 25 Using Flow to train Deep Water Model
  26. 26. 26 Using Flow to train Deep Water Model
  27. 27. 27 Choosing Different Network Structure
  28. 28. 28 Choosing Different Backend
  29. 29. 29 Training Deep Water Models without Programming
  30. 30. H2O’s Mission 30 Making Machine Learning Accessible to Everyone Photo credit: Virgin Media
  31. 31. Grazie mille! 31 • Data Science Milan • Gianmario Spacagna • Politecnico di Milano • Resources o bit.ly/h2o_milan_1 o www.h2o.ai o docs.h2o.ai • Contact o joe@h2o.ai o @matlabulous o github.com/woobe

×