Machine learning share No.1

607 views

Published on

Machine Learning Share No.1

This slide include some study experience of machine learning, machine learning is a methodology, It provide the ability of improve performance.

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
607
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
15
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • 机器学习 学习分享(一)Dreampuf(soddyque@gmail.com)\n
  • 本PPT主要包含如下内容:\n- 什么是机器学习\n- 如何进行“学习”\n- 学习算法\n
  • 什么是机器学习?\n图从上往下,从左往右依次是人脸识别,光学字符识别(OCR),商品推荐,邮件过滤。\n他们的共同之处?\n需要有一定的知识积累(参数),知识的积累是需要准备。\n不同之处?\n输入不同,输出结果也不一样。\n
  • 机器学习就是在对真实情况下问题模型的逼近。无法做到完全真实,那么我们就选择近似的一个模型。\n假设与真实情况的误差叫做风险。\n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Machine learning share No.1

    1. 1. Machine Learning学习分享(一) Dreampuf Apr. 2012
    2. 2. Outline• What is Machine Learning• How to Learning• Learning Algorithm
    3. 3. What
    4. 4. What P = E*T/tT: 任务, E: 经验, P: 效率度量
    5. 5. How to Learning
    6. 6. How• 选择训练经验• 选择目标函数• 选择目标函数的表示• 选择函数 近算法
    7. 7. 程序流程 输入数据 机器学习新数据 估计函数 新估计
    8. 8. 最终设计
    9. 9. Steps• 采集数据• 准备输入数据• 分析数据• 训练算法• 测试(评估)算法
    10. 10. ML-wordle
    11. 11. Learning Algorithm• 有监督学习• 无监督学习
    12. 12. Supervised learning
    13. 13. k-Nearest Neighbors
    14. 14. Naive Bayes
    15. 15. Unsupervised learning
    16. 16. k-Means
    17. 17. Resource• Tom M. Michell : Machine Learning(2003)• Peter Harrington : Machine Learning in action (2012)• Drew Conway & Jbn Myles Wbite Machine Learning for Hackers(2012)• Andrew Ng : http://www.ml-class.org

    ×