
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
SS 304L, an austenitic ChromiumNickel stainless steel offering the optimum combination of corrosion resistance, strength and ductility, is favorable for many mechanical components. The low carbon content reduces susceptibility to carbide precipitation during welding. In case of single pass welding of thinner section of this alloy, pulsed current micro plasma arc welding was found beneficial due to its advantages over the conventional continuous current process. The paper focuses on developing mathematical models to predict grain size and hardness of pulsed current micro plasma arc welded SS304L joints. Four factors, five level, central composite rotatable design matrix is used to optimize the number of experiments. The mathematical models have been developed by response surface method. The adequacy of the models is checked by ANOVA technique. By using the developed mathematical models, grain size and hardness of the joints can be predicted with 99% confidence level. Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and hardness of SS304L steel.
Be the first to like this
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment