
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This study uses Relevance Vector Machine (RVM) regression to develop a probabilistic model for the average horizontal component of 5%damped earthquake response spectra. Unlike conventional models, the proposed approach does not require a functional form, and constructs the model based on a set predictive variables and a set of representative ground motion records. The RVM uses Bayesian inference to determine the confidence intervals, instead of estimating them from the mean squared errors on the training set. An example application using three predictive variables (magnitude, distance and fault mechanism) is presented for sites with shear wave velocities ranging from 450 m/s to 900 m/s. The predictions from the proposed model are compared to an existing parametric model. The results demonstrate the validity of the proposed model, and suggest that it can be used as an alternative to the conventional ground motion models. Future studies will investigate the effect of additional predictive variables on the predictive performance of the model.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment