「GraphDB徹底入門」〜構造や仕組み理解から使いどころ・種々のGraphDBの比較まで幅広く〜

Takahiro Inoue
Takahiro InoueAnalytics at Japan
Graph DB

       GraphDB


 doryokujin

+WEB          ( Tokyo.Webmining #9-2)
[Me]
       doryokujin

                    2

                        2       33

[Company]


                            1
[   ]

    MongoDB JP

    TokyoWebMining   MongoDB

[         ]

    MongoDB



              MongoDB GraphDB
#1


[MongoTokyo]
    Mongo DB Congerence in Japan

    2011 03   01

    10gen             3

                                    …

                http://www.10gen.com/conferences/
    mongotokyo2011
#2


[gihyo     ]

    gihyo.jp

    2

         DocumentDB    GraphDB


               NoSQL
Graph
          Graph

Graph DB


   Graph Traversal

          Graph DB
   Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph

Tinker Pop
   Gremlin, Blueprints, Pipes, Rexster, Mutant
Graph

Graph
          Graph

Graph DB


   Graph Traversal

          Graph DB
   Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph

Tinker Pop
   Gremlin, Blueprints, Pipes, Rexster, Mutant
Graph:      Graph

Graph     DB
        Graph
Graph



[Graph]
     Dots          Lines

            vertices           edges
                        1        (relationship)


                       Dots   Lines
       Graph
Undirected Graph

[    (Undirected)
Graph]
 Vertices:



 Edges:

    (relationship)


    (symmetric)
Directed Graph

[       (Directed) Graph]

    Vertices:



    Edges:

       (relationship)


       (asymmetric)
Directed / Underected Graph


         friend                                     follow



                           friend                                         follow


                                                               follow


friend                                     follow
         [Facebook]                                 [Twitter]
                      ”Undirected Graph”              Follow            ”Directed Graph”
                  ”        ”                                   ”           ”
                      ”friends”                                    ”follow”
Single-Relational Graph


Single-Relational Structures

   →



   Undirected / Directed Graph


    Single-Relatinal
    1     Graph
Single-Relational Graph


         friend                                     follow



                           friend                                         follow


                                                               follow


friend                                     follow
         [Facebook]                                 [Twitter]
                      ”Undirected Graph”              Follow            ”Directed Graph”
                  ”Facebook         ”                          ”Twitter            ”
                      ”friends”                                    ”follow”
Single-Relational

                           Reply
                           num:5
                   Reply                   Block
                   num:5

                                                   Reply
            DM
                                                   num:5
           num:1

                            RT         RT
 Reply    DM
                           num:2      num:2
 num:2   num:1
                              [Twitter]
                                   Graph    ”Directed Graph”
                                           ”Twitter        ”
                                           ”Reply”,”RT”,”DM”,”Block”
*Facebook        Flickr
                               lives_in

                                           is             is     is
                                                                                follow
    lives_in
                         friend                                                                   is
                                           share *


                                  friend        share          follow     follow
               is


[                                      ]                                                           lives_in

    Undirected      Directed
                                                     is        is
                                                is

                                                                           lives_in
Multi-Relational Graph

Multi-Relational Structures




      lives_in: User → Country
      Share: Facebook → Flikcr
Multi-Relational


                      Reply
              Reply           Block



         DM                           Reply



                       RT     RT
Reply   DM                            [Twitter]



                                              ”Twitter      ”
                                              ”Reply”,”RT”,”DM”,”Block”
Multi-Relational
                                                             *Facebook        Flickr
                     lives_in

                                has                   has
                                               has
                                                                     follow
 lives_in
                   friend                                                              has

                     share *
            has             friend       share              follow



                                                                                        lives_in

[Multi-Relatinal Graph]
                                     has has         has

                                                                 lives_in
Property Graph

  Property Graph
           Multi-Relational Graph                        (Property)


                      Graph DB             Graph

           1

                         key/value


   id          id_A                     follow                id      id_B
follow         100                                         follow     500
follower       200               date       2011/01/23     follower   1000
Property Graph

                          Reply
                          num:5
                  Reply                   Block
                  num:5

                                                  Reply
           DM
                                                  num:5
          num:1

                           RT         RT
Reply    DM
                          num:2      num:2
num:2   num:1
                                  Graph    ”Property Graph”
                                          ”Twitter        ”
                                          ”Reply”,”RT”,”DM”,”Block”
                                            ”num”
Property Graph
                                                                                name      doryokujin

                                                                                sex           man
                                           lives_in                             birth     1985/05/14


                                                              has                       has                                        id        id_B

                                                                                                                follow          follow       1000

                                                                                                                                follower     2000
lives_in                   date         2011/01/23

                           friend                                                                                                   has
                                               friend
                                        date     2011/01/23

           has                                         friend                    follow                follow
                                                                         date    2010/03/23             date       2011/01/23
                 name         full name

                  mail        xxx@yyy

                 address          zzz
                                                                                                                                        lives_in
                                                                                                           id          id_A

                                                                                                         follow         100

                                                                                                        follower        200
                                                                has                 has
                                                     date   2010/03/23
                                                                                                       lives_in
Graph




   The Graph Traversal Pattern
Property Graph


    Property Graph        Graph

    Property Graph      Graph DB
           Tinker Pop



                        Hyper Graph
Graph DB

Gragh
          Graph

Graph DB


   Graph Traversal

          Graph DB
   Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph

Tinker Pop
   Gremlin, Blueprints, Pipes, Rexster, Mutant
Graph DB:

   Property Graph           DB
“Graph DB”
Graph DB


[            DB ≠ Graph DB]

    Graph

              DB

                DB Graph DB
RDB            Graph

[Relatinal Database]           A

outV          inV
 A              B         B        C
 A              C
 C              D
                               D
 D              A
Document DB             Graph
       [Document Database]             A
{
    A : {
      out : [B, C], in : [D]
    }
    B : {
      in : [A]                 B           C
    }
    C : {
      out : [D], in : [A]
    }
    D : {
      out : [A], in : [C]              D
    }
}
XML DB                   Graph
    [XML Database]                       A

<graphml>
<graph>
<node id=A />
<node id=B />                     B          C
<node id=C />
<edge source=A   target=B   />
<edge source=A   target=C   />
<edge source=C   target=D   />
<edge source=D   target=A   />
</graph>                                 D
</graphml>
Graph DB

[   ]

“A graph database is any storage system
   that provides index-free adjacency”
                   The Graph Traversal Programming Pattern




              (“adjacent”)
                             ( “index-free” )
Non-Graph DB and
                 Index-Based Adjacency

                                                          B   E
                            1. A




                                               3. (B,C)

                                   A
 A         B      C
B, C       E     D, E
                        D      E
                                        2.
                                                          C   D
     log_2(n)                          (B,C)
     time cost
Graph DB and
                Index-Free Adjacency
‣

    ”Mini - Index”
                                            B   E

‣
                                     1.


        1                       A
                                    (B,C)


‣
                                            C   D
                 id      id_B

              follow     1000

              follower   2000
Property (key/value)




   The Graph Traversal Programming Pattern
GraphDB: Graph Traversal

      Graph DB
Graph DB         Query
Graph DB       Query

Graph Query = Graph Traversal
   Traversal =

   Root
   Graph


   Graph Traversal    (Root)

                         Index-Free Adjacency
private	
  void	
  printFriends(	
  Node	
  person	
  )
{
	
  	
  	
  	
  Traverser	
  traverser	
  =	
  person.traverse(
	
  	
  	
  	
  	
  	
  	
  	
  Order.BREADTH_FIRST,	
  	
  //	
  
	
  	
  	
  	
  	
  	
  	
  	
  StopEvaluator.END_OF_GRAPH,	
  //	
  Graph
	
  	
  	
  	
  	
  	
  	
  	
  ReturnableEvaluator.ALL_BUT_START_NODE,	
  //	
  Root	
  Node
	
  	
  	
  	
  	
  	
  	
  	
  MyRelationshipTypes.KNOWS,	
  //	
  ”KNOWS”
	
  	
  	
  	
  	
  	
  	
  	
  Direction.OUTGOING	
  );	
  //	
  
	
  	
  	
  	
  for	
  (	
  Node	
  friend	
  :	
  traverser	
  )
	
  	
  	
  	
  {	
  	
  	
  //	
         Node         ”name”
	
  	
  	
  	
  	
  	
  	
  	
  System.out.println(	
  friend.getProperty(	
  "name"	
  )	
  );
	
  	
  	
  	
  }
                                                                                                  Neo4j Wiki
}
1


                                  3


1


         2


    Trinity
    Morpheus
    Cypher
    Agent	
  Smith
                         Neo4j Wiki
private	
  void	
  findHackers(	
  Node	
  startNode	
  )                                                                               Neo4j Wiki
{
	
  	
  	
  	
  Traverser	
  traverser	
  =	
  startNode.traverse(
	
  	
  	
  	
  	
  	
  	
  	
  Order.BREADTH_FIRST,	
  //	
  
	
  	
  	
  	
  	
  	
  	
  	
  StopEvaluator.END_OF_GRAPH,	
  //	
  Graph
	
  	
  	
  	
  	
  	
  	
  	
  new	
  ReturnableEvaluator()	
  //	
  
	
  	
  	
  	
  	
  	
  	
  	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  public	
  boolean	
  isReturnableNode(	
  TraversalPosition	
  currentPosition	
  )
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Relationship	
  rel	
  =	
  currentPosition.lastRelationshipTraversed();
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (	
  rel	
  !=	
  null	
  &&	
  rel.isType(	
  MyRelationshipTypes.CODED_BY	
  )	
  )
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  true;	
  //          	
  “CODED_BY”	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  false;	
  //	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  	
  	
  },	
  //	
                                    2
	
  	
  	
  	
  	
  	
  	
  	
  MyRelationshipTypes.CODED_BY,	
  Direction.OUTGOING,	
  //	
  
	
  	
  	
  	
  	
  	
  	
  	
  MyRelationshipTypes.KNOWS,	
  Direction.OUTGOING	
  );	
  //	
  
	
  	
  	
  	
  for	
  (	
  Node	
  hacker	
  :	
  traverser	
  )
	
  	
  	
  	
  {
	
  	
  	
  	
  	
  	
  	
  	
  TraversalPosition	
  position	
  =	
  traverser.currentPosition();
	
  	
  	
  	
  	
  	
  	
  	
  System.out.println(	
  "At	
  depth	
  "	
  +	
  position.depth()	
  +	
  "	
  =>	
  "
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +	
  hacker.getProperty(	
  "name"	
  )	
  );
	
  	
  	
  	
  }                                                                             ∴	
  At	
  depth	
  4	
  =>	
  The	
  Architect
Graph DB

[Data Locality]



        [Local Search, Social Network]   2


        [Transition]       Web


        [Recommendation]
[Graph Problems]


    [Shortest Path]   2

GraphDB                   Traversal




                                  Neo4jrb
Graph DB

               ”       ”
                       10

         ”Knows”



  Tables, Documents, Key/Value Model



  GraphDB                              Union,
  Intersection, Join
Graph DB

[     ]

           Property Graph

    Index-Free Adjacency

    Graph Query = Graph Traversal

    Data Locality
Graph DB

Graph
          Graph

Graph DB


   Graph Traversal

          Graph DB
   Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph

Tinker Pop
   Gremlin, Blueprints, Pipes, Rexster, Mutant
Neo4j
Neo4j
[   ] HP
    Java
                  AGPLv3
    2003     24                     8
    2009     VC
    ACID


    Propety Graph Model / Gremlin
    Lucene
Neo4j

[Language Binding - Framework]

    Python - Django
    Ruby - Ruby on Rails
    Clojure
    Scala
    Groovy - Griffin / Grails
    Java - Spring Framework

                  Ruby
           Ruby Java
Neo4j
[Tools]
     Shell
        Shell    Graph   Traverse Indexing

     neo4j-server
        Neo4j REST API

        Admin tools
     Online BackUp

     Neoclipse
        Neo4j                                ↑

     Batch Insert
Neo4j
[ver. 1.2]                 1.2

     Neo4j Server
         REST API

         Admin Interface

     High Availability

     Kernel
sones
sones
[   ] HP
    C#
                  AGPLv3
    2011     VC
    ACID
    REST Interface
    Property Graph Model / Gremlin
               : Property Hyper Graph
    Graph Query Language(GQL)
sones
    [GQL]
       SQL             Traversal
       Cheat Sheet
                             Query


• FROM User SELECT User.Friends.Friends.Name
// aggregation
• SELECT COUNT(User.Friends)
• SELECT User.Friends.Random(2)
• SELECT User.Friends.Name.Substring(2,5)
Orient DB
Orient DB

[   ] HP
    Java
                  Apache2.0
    1997               C++ → Java
    Document-Graph DB
    ACID
    Shell / REST Interface
    Propety Graph Model / Gremlin
Orient DB
     [Document-Graph DB]
              [    ] Orient DB                Object DB  Key/Value
              Server                         Document DB
// DATABASE   OPEN
ODatabaseDocumentTx db = new ODatabaseDocumentTx("remote:localhost/petshop").open
("admin", "admin");

//      Document
ODocument doc = new ODocument(db, "Person");
doc.field( "name", "Luke" );
doc.field( "surname", "Skywalker" );
doc.field( "city", new ODocument(db, "City").field("name","Rome").field("country",
"Italy") );
             
//      Transaction
doc.save();

db.close();
Orient DB
      [Document-Graph DB]
                 OGraphVertex

               OGraphEdge

                  OGraphElement
           ODocumentWrapper

                        Document

           SQL

SELECT FROM OGraphVertex WHERE outEdges CONTAINS ( label = 'knows' )

//7           ”knows”

SELECT FROM OGraphVertex WHERE outEdges TRAVERSE(0,7,'out,outEdges')
( @class = 'OGraphEdge' and label = 'knows' )
Orient DB

[Language Binding Using Binary Protocol]

    Java
    C
    PHP
    JRuby (Ruby: soon)
[Language Binding Using REST Protocol]

    Python
    Java Script
InfoGrid
InfoGrid
    [    ] HP
        JAVA
                           AGPLv3
        ACID
        REST Interface
        MeshObject Graph
MeshBase _GDB = StoreMeshBase.create(_MySQLStore);
MeshObject _xkcd = _GDB.getMeshObjectLifecycleManager
().createMeshObject();
_xkcd.setProperty("Name", "xkcd");
_xkcd.setProperty("Url", "http://www.xkcd.com");
_xkcd.relate(_good)
Infinite Graph
Infinite Graph

[   ] HP
    C++
                                 Academic and Start
    Up
    2010   6
    Distributed Graph DB
    ↑Objectivity/DB: distributed database server
「GraphDB徹底入門」〜構造や仕組み理解から使いどころ・種々のGraphDBの比較まで幅広く〜
Graph DB:
                                                Data                                    SQL Like
GraphDB      License    Language   Protocol                  Gremlin    Binding
                                                Model                                    Query


                                   REST/       Property                Ruby, Python,
 Neo4j      AGPLv3        Java                                 Yes
                                                                         Scala,...
                                                                                           -
                                   JSON         Graph

                                   REST/       Property
 sones      AGPLv3        C#        JSON        Graph          Yes           -            Yes
                                   (XML)      (+Extend)

                                   REST/       Property                 PHP, Jruby,
OrientDB    Apache2.0     Java                                 Yes
                                                                       Python, JS,...
                                                                                          Yes
                                   JSON         Graph

                                                Property
                                   REST/
Info Grid   AGPLv3        Java                  Graph?          -            -             -
                                   JSON       (MeshObject)


 Infinite                                       Property
             Product      C++         -                         -            -             -
  Graph                                         Graph
Graph DB

[      ]

    Graph DB

                     Neo4j
    Open Source Social Graph Software Not Ready Yet

                       Graph DB
       Hypergtaph: PropertyGraph                 HyperGraph

       Pregel: bulk synchronous parallel model                Distributed DB
       Google

       FlockDB: Distributed DB for storing adjancency lists     Twitter
Tinker Pop

Graph
          Graph

Graph DB


   Graph Traversal

          Graph DB
   Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph

Tinker Pop
   Gremlin, Blueprints, Pipes, Rexster, Mutant
Tinker Pop
Tinker Pop

[Tinker Pop] HP
                      Property Graph Model
         GraphDB


       Blueprints: A Property Graph Model Interface
       Gremlin: A Graph Traversal Language
       Pipes: A Data Flow Framework using Process Graphs
       Rexster: A RESTful Graph Shell
       Mutant: A Poly-ScriptEngine ScriptEngine
Tinker Pop
Tinker Pop: BluePrints
BluePrints

[       ] HP
        GraphDB      ”JDBC”

Property Graph Model                 GraphDB
[Now]
               Tinker Graph: in-memory property graph model
               Sail: Open RDF
               Neo4j, Orient DB, sones, ...
[Future]
               Redis
               Infinite Graph, Dex
BluePrints

      GraphDB
Graph graph = new Neo4jGraph("/tmp/graph/neo4j");
// Graph graph = new OrientGraph("/tmp/graph/orientdb");
Vertex a = graph.addVertex(null);
Vertex b = graph.addVertex(null);
a.setProperty("name","marko");
b.setProperty("name","aaron");
Edge e = graph.addEdge(null,a,b,"knows");
e.setProperty("since",2010);
graph.shutdown();
BluePrints
     Transaction
graph.startTransaction();

try{
  Vertex luca = graph.addVertex(null);
  luca.setProperty( "name", "Luca" );

  Vertex marko = graph.addVertex(null);
  marko.setProperty( "name", "Marko" );

  Edge lucaKnowsMarko = graph.addEdge(null, luca, marko,"knows");

  graph.stopTransaction(Conclusion.SUCCESS);

} catch( Exception e ) {

  graph.stopTransaction(Conclusion.FAILURE);
}
Tinker Pop: Gremlin
Gremlin


[     ] HP
Gremlin = Graph Programing Language
Blueprints               GraphDB
Shell
    GraphDB      Query


Java + Groovy
Gremlin

Property Graph




                           Basic Graph Traversals
doryokujin$ ./gremlin.sh
         ,,,/
         (o o)
-----oOOo-(_)-oOOo-----

gremlin>	
  g	
  =	
  TinkerGraphFactory.createTinkerGraph()
==>tinkergraph[vertices:6	
  edges:6]	
  //        6     6
gremlin>	
  g.class
==>class	
  
com.tinkerpop.blueprints.pgm.impls.tg.TinkerGraph
gremlin>	
  //	
  
gremlin>	
  g.V
==>v[3]
==>v[2]
...
gremlin>	
  //	
  
gremlin>	
  g.E
==>e[10][4-­‐created-­‐>5]
==>e[7][1-­‐knows-­‐>2]
==>e[9][1-­‐created-­‐>3]
...
                                                      Getting Srarted
gremlin>	
  v	
  =	
  g.v(1)	
  //	
  id=1	
  
==>v[1]
gremlin>	
  v.keys()	
  //	
  
==>age
==>name
gremlin>	
  v.values()	
  //	
  
==>29
==>marko
gremlin>	
  v.name	
  +	
  '	
  is	
  '	
  +	
  v.age	
  +	
  '	
  years	
  old.'
==>marko	
  is	
  29	
  years	
  old.
gremlin>	
  //	
  id=1,	
  name=marko	
  
gremlin>	
  v.outE
==>e[7][1-­‐knows-­‐>2]
==>e[9][1-­‐created-­‐>3]
==>e[8][1-­‐knows-­‐>4]
gremlin>	
  //	
  
gremlin>	
  v.outE.weight
==>0.5
==>0.4
==>1.0                                                                         Getting Srarted
gremlin>	
  //	
  id=1                                                                              1.0


gremlin>	
  v.outE{it.weight	
  <	
  1.0}.inV
==>v[2]
==>v[3]
gremlin>	
  //	
  
gremlin>	
  list	
  =	
  []	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
gremlin>	
  v.outE{it.weight	
  <	
  1.0}.inV	
  >>	
  list
==>v[2]
==>v[3]
gremlin>	
  //	
  list                                                              property	
  maps
gremlin>	
  list.collect{	
  it.map()	
  }
==>{name=vadas,	
  age=27}
==>{name=lop,	
  lang=java}
gremlin>	
  //	
  list
gremlin>	
  list.inE()	
  	
  	
  	
  	
  	
  	
  
==>e[7][1-­‐knows-­‐>2]
==>e[9][1-­‐created-­‐>3]
...
                                                                                                                                        Getting Srarted
gremlin>	
  list.inE{it.label=='knows'}	
  	
  //	
                      'knows'


              ==>e[7][1-­‐knows-­‐>2]
              gremlin>	
  list.inE()[[label:'knows']]	
  //	
  
              ==>e[7][1-­‐knows-­‐>2]
              gremlin>	
  list.inE()[[label:'knows']].outV.name	
  //
                                                         :name	
  
              ==>marko
                                                                                     Getting Srarted




~20000ms:	
  g.V.outE{it['label']=='followed_by'}.inV.outE{it['label']=='followed_by'}.inV.outE	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {it['label']=='followed_by'}.inV	
  >>-­‐1
~9000ms:	
  	
  g.V.outE{it.label=='followed_by'}.inV.outE{it.label=='followed_by'}.inV.outE
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {it.label=='followed_by'}.inV	
  >>-­‐1
~8500ms:	
  	
  g.V.outE{it.getLabel()=='followed_by'}.inV.outE{it.getLabel()=='followed_by'}.inV.outE	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {it.getLabel()=='followed_by'}.inV	
  >>-­‐1
~6000ms:	
  	
  g.V.outE[[label:'followed_by']].inV.outE[[label:'followed_by']].inV.outE	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [[label:'followed_by']].inV	
  >>-­‐1
                                                                     ClosureFilterPipe vs. PropertyFIlterPipe
Tinker Pop: Pipes
Pipes

[       ] HP
Pipes = Data Flow Framework
Pipes    Graph Traversal    1   1

Pipes          filtering, splitting, merging, traversing,...
Gremlin




g:id-v('a')/outE[@label='knows']/inV/outE[@label='develops']/inV/@name


      Pipe pipe1 = new VertexEdgePipe(Step.OUT_EDGES);
      Pipe pipe2 = new LabelFilterPipe("knows", Filter.NOT_EQUALS);
      Pipe pipe3 = new EdgeVertexPipe(Step.IN_VERTEX);
      Pipe pipe4 = new VertexEdgePipe(Step.OUT_EDGES);
      Pipe pipe5 = new LabelFilterPipe("develops",
      Filter.NOT_EQUALS);
      Pipe pipe6 = new EdgeVertexPipe(Step.IN_VERTEX);
      Pipe pipe7 = new PropertyPipe("name");

      Pipe pipeline = new Pipeline
      (pipe1,pipe2,pipe3,pipe4,pipe5,pipe6,pipe7);
      pipeline.setStarts(new SingleIterator(graph.getVertex("a"));
      for(String name : pipeline) {
        System.out.println(name);
      }                                        A Graph Processing Stack
Pipes
        Pipes
public	
  class	
  NumCharsPipe	
  extends	
  AbstractPipe<String,Integer>	
  {
	
  	
  public	
  Integer	
  processNextStart()	
  {
	
  	
  	
  	
  String	
  word	
  =	
  this.starts.next();
	
  	
  	
  	
  return	
  word.length();
	
  	
  }
}                                                          A Graph Processing Stack
Tinker Pop: Rexster
Rexster


[    ] HP
Rexster = A RESTful Graph Shell
Blueprints               GraphDB   RESTful
API             (JSON)
Gremlin
> http://localhost:8182/examplegraph/vertices/b

{
  "version":"0.1",
  "results": {
    "_type":"vertex",
    "_id":"b",
    "name":"aaron",
    "type":"person"
  },
  "query_time":0.1537
}                                            A Graph Processing Stack

// g:key-v('name','DARK STAR')[0]: Usin gGremlin Code
> http://localhost:8182/gratefulgraph/traversals/gremlin?
script=g:key-v%28%27name%27,%27DARK%20STAR%27%29[0]

{
	
  	
  "results":	
  [{
	
  	
  	
  	
  "_type":"vertex",
	
  	
  	
  	
  "_id":"89",
	
  	
  	
  	
  "name":"DARK	
  STAR",
	
  	
  	
  	
  "song_type":"original",
	
  	
  	
  	
  "performances":219,
	
  	
  	
  	
  "type":"song"}
	
  	
  ],
	
  	
  "query_time":6.753024,
	
  	
  "success":true,
	
  	
  "version"
}                                                      Using Gremilin
Tinker Pop: Mutant
Mutant
[      ] HP
Mutant = A Poly-ScriptEngine ScriptEngine
JVM


    Script Engine
Mutant Console
marko:~/software/mutant$	
  ./mutant.sh	
  
	
  	
  	
  	
  	
  	
  //
	
  	
  	
  	
  	
  oO	
  ~~-­‐_
___m(___m___~.___	
  	
  MuTanT	
  0.1-­‐SNAPSHOT
_|__|__|__|__|__|	
  	
  	
  	
  	
  [	
  ?h	
  =	
  help	
  ]

[gremlin]	
  gremlin	
  0.6-­‐SNAPSHOT
[Groovy]	
  Groovy	
  Scripting	
  Engine	
  2.0
[ruby]	
  JSR	
  223	
  JRuby	
  Engine	
  1.5.5
[ECMAScript]	
  Mozilla	
  Rhino	
  1.6	
  release	
  2
[AppleScript]	
  AppleScriptEngine	
  1.0

mutant[gremlin]>	
  $x	
  :=	
  12
[12]
mutant[gremlin]>	
  ?x
mutant[AppleScript]>	
  ?x
mutant[Groovy]>	
  $x
12
mutant[Groovy]>	
  ?x
mutant[ruby]>	
  $x
12
mutant[ruby]>	
  ?x
mutant[ECMAScript]>	
  $x
12                                                               Basic Examples
[     ]

           Graph DB




    Graph DB
      Graph Partitioning



      Pregel Neo4j
…



※
    Graph DB
    http://snap.stanford.edu/data/index.html
1 of 91

Recommended

GraphQLのsubscriptionで出来ること by
GraphQLのsubscriptionで出来ることGraphQLのsubscriptionで出来ること
GraphQLのsubscriptionで出来ることShingo Fukui
9.1K views29 slides
PlaySQLAlchemy: SQLAlchemy入門 by
PlaySQLAlchemy: SQLAlchemy入門PlaySQLAlchemy: SQLAlchemy入門
PlaySQLAlchemy: SQLAlchemy入門泰 増田
21.5K views91 slides
Docker Compose 徹底解説 by
Docker Compose 徹底解説Docker Compose 徹底解説
Docker Compose 徹底解説Masahito Zembutsu
61.1K views123 slides
異次元のグラフデータベースNeo4j by
異次元のグラフデータベースNeo4j異次元のグラフデータベースNeo4j
異次元のグラフデータベースNeo4j昌桓 李
13.1K views88 slides
ストリーム処理を支えるキューイングシステムの選び方 by
ストリーム処理を支えるキューイングシステムの選び方ストリーム処理を支えるキューイングシステムの選び方
ストリーム処理を支えるキューイングシステムの選び方Yoshiyasu SAEKI
40.2K views42 slides
グラフデータベース入門 by
グラフデータベース入門グラフデータベース入門
グラフデータベース入門Masaya Dake
20.8K views49 slides

More Related Content

What's hot

今こそ知りたいSpring Batch(Spring Fest 2020講演資料) by
今こそ知りたいSpring Batch(Spring Fest 2020講演資料)今こそ知りたいSpring Batch(Spring Fest 2020講演資料)
今こそ知りたいSpring Batch(Spring Fest 2020講演資料)NTT DATA Technology & Innovation
8.5K views53 slides
Apache Avro vs Protocol Buffers by
Apache Avro vs Protocol BuffersApache Avro vs Protocol Buffers
Apache Avro vs Protocol BuffersSeiya Mizuno
5.3K views33 slides
Redisの特徴と活用方法について by
Redisの特徴と活用方法についてRedisの特徴と活用方法について
Redisの特徴と活用方法についてYuji Otani
101.6K views65 slides
マイクロサービス 4つの分割アプローチ by
マイクロサービス 4つの分割アプローチマイクロサービス 4つの分割アプローチ
マイクロサービス 4つの分割アプローチ増田 亨
41.4K views60 slides
AWSで作る分析基盤 by
AWSで作る分析基盤AWSで作る分析基盤
AWSで作る分析基盤Yu Otsubo
7.3K views118 slides
え、まって。その並列分散処理、Kafkaのしくみでもできるの? Apache Kafkaの機能を利用した大規模ストリームデータの並列分散処理 by
え、まって。その並列分散処理、Kafkaのしくみでもできるの? Apache Kafkaの機能を利用した大規模ストリームデータの並列分散処理え、まって。その並列分散処理、Kafkaのしくみでもできるの? Apache Kafkaの機能を利用した大規模ストリームデータの並列分散処理
え、まって。その並列分散処理、Kafkaのしくみでもできるの? Apache Kafkaの機能を利用した大規模ストリームデータの並列分散処理NTT DATA Technology & Innovation
12.9K views35 slides

What's hot(20)

Apache Avro vs Protocol Buffers by Seiya Mizuno
Apache Avro vs Protocol BuffersApache Avro vs Protocol Buffers
Apache Avro vs Protocol Buffers
Seiya Mizuno5.3K views
Redisの特徴と活用方法について by Yuji Otani
Redisの特徴と活用方法についてRedisの特徴と活用方法について
Redisの特徴と活用方法について
Yuji Otani101.6K views
マイクロサービス 4つの分割アプローチ by 増田 亨
マイクロサービス 4つの分割アプローチマイクロサービス 4つの分割アプローチ
マイクロサービス 4つの分割アプローチ
増田 亨41.4K views
AWSで作る分析基盤 by Yu Otsubo
AWSで作る分析基盤AWSで作る分析基盤
AWSで作る分析基盤
Yu Otsubo7.3K views
え、まって。その並列分散処理、Kafkaのしくみでもできるの? Apache Kafkaの機能を利用した大規模ストリームデータの並列分散処理 by NTT DATA Technology & Innovation
え、まって。その並列分散処理、Kafkaのしくみでもできるの? Apache Kafkaの機能を利用した大規模ストリームデータの並列分散処理え、まって。その並列分散処理、Kafkaのしくみでもできるの? Apache Kafkaの機能を利用した大規模ストリームデータの並列分散処理
え、まって。その並列分散処理、Kafkaのしくみでもできるの? Apache Kafkaの機能を利用した大規模ストリームデータの並列分散処理
Dockerfile を書くためのベストプラクティス解説編 by Masahito Zembutsu
Dockerfile を書くためのベストプラクティス解説編Dockerfile を書くためのベストプラクティス解説編
Dockerfile を書くためのベストプラクティス解説編
Masahito Zembutsu84.5K views
KafkaとAWS Kinesisの比較 by Yoshiyasu SAEKI
KafkaとAWS Kinesisの比較KafkaとAWS Kinesisの比較
KafkaとAWS Kinesisの比較
Yoshiyasu SAEKI14.8K views
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」 by Takuto Wada
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
SQLアンチパターン 幻の第26章「とりあえず削除フラグ」
Takuto Wada148.8K views
グラフデータベース:Neo4j、そしてRDBからの移行手順の紹介 by ippei_suzuki
グラフデータベース:Neo4j、そしてRDBからの移行手順の紹介グラフデータベース:Neo4j、そしてRDBからの移行手順の紹介
グラフデータベース:Neo4j、そしてRDBからの移行手順の紹介
ippei_suzuki6.8K views
フロー効率性とリソース効率性について #xpjug by Itsuki Kuroda
フロー効率性とリソース効率性について #xpjugフロー効率性とリソース効率性について #xpjug
フロー効率性とリソース効率性について #xpjug
Itsuki Kuroda106.4K views
Dockerからcontainerdへの移行 by Kohei Tokunaga
Dockerからcontainerdへの移行Dockerからcontainerdへの移行
Dockerからcontainerdへの移行
Kohei Tokunaga16.7K views
マルチテナント化で知っておきたいデータベースのこと by Amazon Web Services Japan
マルチテナント化で知っておきたいデータベースのことマルチテナント化で知っておきたいデータベースのこと
マルチテナント化で知っておきたいデータベースのこと
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 - by onozaty
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -
今からでも遅くないDBマイグレーション - Flyway と SchemaSpy の紹介 -
onozaty3.2K views
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~ by NTT DATA OSS Professional Services
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス by Amazon Web Services Japan
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
マイクロにしすぎた結果がこれだよ! by mosa siru
マイクロにしすぎた結果がこれだよ!マイクロにしすぎた結果がこれだよ!
マイクロにしすぎた結果がこれだよ!
mosa siru132.7K views
Linuxにて複数のコマンドを並列実行(同時実行数の制限付き) by Hiro H.
Linuxにて複数のコマンドを並列実行(同時実行数の制限付き)Linuxにて複数のコマンドを並列実行(同時実行数の制限付き)
Linuxにて複数のコマンドを並列実行(同時実行数の制限付き)
Hiro H.15.1K views
大規模ソーシャルゲームを支える技術~PHP+MySQLを使った高負荷対策~ by infinite_loop
大規模ソーシャルゲームを支える技術~PHP+MySQLを使った高負荷対策~大規模ソーシャルゲームを支える技術~PHP+MySQLを使った高負荷対策~
大規模ソーシャルゲームを支える技術~PHP+MySQLを使った高負荷対策~
infinite_loop67.3K views

More from Takahiro Inoue

Treasure Data × Wave Analytics EC Demo by
Treasure Data × Wave Analytics EC DemoTreasure Data × Wave Analytics EC Demo
Treasure Data × Wave Analytics EC DemoTakahiro Inoue
8K views32 slides
トレジャーデータとtableau実現する自動レポーティング by
トレジャーデータとtableau実現する自動レポーティングトレジャーデータとtableau実現する自動レポーティング
トレジャーデータとtableau実現する自動レポーティングTakahiro Inoue
14.8K views22 slides
Tableauが魅せる Data Visualization の世界 by
Tableauが魅せる Data Visualization の世界Tableauが魅せる Data Visualization の世界
Tableauが魅せる Data Visualization の世界Takahiro Inoue
26K views69 slides
トレジャーデータのバッチクエリとアドホッククエリを理解する by
トレジャーデータのバッチクエリとアドホッククエリを理解するトレジャーデータのバッチクエリとアドホッククエリを理解する
トレジャーデータのバッチクエリとアドホッククエリを理解するTakahiro Inoue
11.4K views28 slides
20140708 オンラインゲームソリューション by
20140708 オンラインゲームソリューション20140708 オンラインゲームソリューション
20140708 オンラインゲームソリューションTakahiro Inoue
4.1K views60 slides
トレジャーデータ流,データ分析の始め方 by
トレジャーデータ流,データ分析の始め方トレジャーデータ流,データ分析の始め方
トレジャーデータ流,データ分析の始め方Takahiro Inoue
28.2K views34 slides

More from Takahiro Inoue(20)

Treasure Data × Wave Analytics EC Demo by Takahiro Inoue
Treasure Data × Wave Analytics EC DemoTreasure Data × Wave Analytics EC Demo
Treasure Data × Wave Analytics EC Demo
Takahiro Inoue8K views
トレジャーデータとtableau実現する自動レポーティング by Takahiro Inoue
トレジャーデータとtableau実現する自動レポーティングトレジャーデータとtableau実現する自動レポーティング
トレジャーデータとtableau実現する自動レポーティング
Takahiro Inoue14.8K views
Tableauが魅せる Data Visualization の世界 by Takahiro Inoue
Tableauが魅せる Data Visualization の世界Tableauが魅せる Data Visualization の世界
Tableauが魅せる Data Visualization の世界
Takahiro Inoue26K views
トレジャーデータのバッチクエリとアドホッククエリを理解する by Takahiro Inoue
トレジャーデータのバッチクエリとアドホッククエリを理解するトレジャーデータのバッチクエリとアドホッククエリを理解する
トレジャーデータのバッチクエリとアドホッククエリを理解する
Takahiro Inoue11.4K views
20140708 オンラインゲームソリューション by Takahiro Inoue
20140708 オンラインゲームソリューション20140708 オンラインゲームソリューション
20140708 オンラインゲームソリューション
Takahiro Inoue4.1K views
トレジャーデータ流,データ分析の始め方 by Takahiro Inoue
トレジャーデータ流,データ分析の始め方トレジャーデータ流,データ分析の始め方
トレジャーデータ流,データ分析の始め方
Takahiro Inoue28.2K views
オンラインゲームソリューション@トレジャーデータ by Takahiro Inoue
オンラインゲームソリューション@トレジャーデータオンラインゲームソリューション@トレジャーデータ
オンラインゲームソリューション@トレジャーデータ
Takahiro Inoue7.8K views
事例で学ぶトレジャーデータ 20140612 by Takahiro Inoue
事例で学ぶトレジャーデータ 20140612事例で学ぶトレジャーデータ 20140612
事例で学ぶトレジャーデータ 20140612
Takahiro Inoue8.5K views
トレジャーデータ株式会社について(for all Data_Enthusiast!!) by Takahiro Inoue
トレジャーデータ株式会社について(for all Data_Enthusiast!!)トレジャーデータ株式会社について(for all Data_Enthusiast!!)
トレジャーデータ株式会社について(for all Data_Enthusiast!!)
Takahiro Inoue13.4K views
この Visualization がすごい2014 〜データ世界を彩るツール6選〜 by Takahiro Inoue
この Visualization がすごい2014 〜データ世界を彩るツール6選〜この Visualization がすごい2014 〜データ世界を彩るツール6選〜
この Visualization がすごい2014 〜データ世界を彩るツール6選〜
Takahiro Inoue50.2K views
Treasure Data Intro for Data Enthusiast!! by Takahiro Inoue
Treasure Data Intro for Data Enthusiast!!Treasure Data Intro for Data Enthusiast!!
Treasure Data Intro for Data Enthusiast!!
Takahiro Inoue122K views
Hadoop and the Data Scientist by Takahiro Inoue
Hadoop and the Data ScientistHadoop and the Data Scientist
Hadoop and the Data Scientist
Takahiro Inoue5.2K views
MongoDB: Intro & Application for Big Data by Takahiro Inoue
MongoDB: Intro & Application  for Big DataMongoDB: Intro & Application  for Big Data
MongoDB: Intro & Application for Big Data
Takahiro Inoue4.9K views
An Introduction to Fluent & MongoDB Plugins by Takahiro Inoue
An Introduction to Fluent & MongoDB PluginsAn Introduction to Fluent & MongoDB Plugins
An Introduction to Fluent & MongoDB Plugins
Takahiro Inoue4.6K views
An Introduction to Tinkerpop by Takahiro Inoue
An Introduction to TinkerpopAn Introduction to Tinkerpop
An Introduction to Tinkerpop
Takahiro Inoue6.1K views
The Definition of GraphDB by Takahiro Inoue
The Definition of GraphDBThe Definition of GraphDB
The Definition of GraphDB
Takahiro Inoue3.7K views
Large-Scale Graph Processing〜Introduction〜(完全版) by Takahiro Inoue
Large-Scale Graph Processing〜Introduction〜(完全版)Large-Scale Graph Processing〜Introduction〜(完全版)
Large-Scale Graph Processing〜Introduction〜(完全版)
Takahiro Inoue4.9K views
Large-Scale Graph Processing〜Introduction〜(LT版) by Takahiro Inoue
Large-Scale Graph Processing〜Introduction〜(LT版)Large-Scale Graph Processing〜Introduction〜(LT版)
Large-Scale Graph Processing〜Introduction〜(LT版)
Takahiro Inoue1.4K views

Recently uploaded

Mobile Core Solutions & Successful Cases.pdf by
Mobile Core Solutions & Successful Cases.pdfMobile Core Solutions & Successful Cases.pdf
Mobile Core Solutions & Successful Cases.pdfIPLOOK Networks
16 views7 slides
AI + Memoori = AIM by
AI + Memoori = AIMAI + Memoori = AIM
AI + Memoori = AIMMemoori
15 views9 slides
CryptoBotsAI by
CryptoBotsAICryptoBotsAI
CryptoBotsAIchandureddyvadala199
42 views5 slides
Redefining the book supply chain: A glimpse into the future - Tech Forum 2023 by
Redefining the book supply chain: A glimpse into the future - Tech Forum 2023Redefining the book supply chain: A glimpse into the future - Tech Forum 2023
Redefining the book supply chain: A glimpse into the future - Tech Forum 2023BookNet Canada
46 views19 slides
Bronack Skills - Risk Management and SRE v1.0 12-3-2023.pdf by
Bronack Skills - Risk Management and SRE v1.0 12-3-2023.pdfBronack Skills - Risk Management and SRE v1.0 12-3-2023.pdf
Bronack Skills - Risk Management and SRE v1.0 12-3-2023.pdfThomasBronack
31 views31 slides
Future of AR - Facebook Presentation by
Future of AR - Facebook PresentationFuture of AR - Facebook Presentation
Future of AR - Facebook PresentationRob McCarty
66 views27 slides

Recently uploaded(20)

Mobile Core Solutions & Successful Cases.pdf by IPLOOK Networks
Mobile Core Solutions & Successful Cases.pdfMobile Core Solutions & Successful Cases.pdf
Mobile Core Solutions & Successful Cases.pdf
IPLOOK Networks16 views
AI + Memoori = AIM by Memoori
AI + Memoori = AIMAI + Memoori = AIM
AI + Memoori = AIM
Memoori15 views
Redefining the book supply chain: A glimpse into the future - Tech Forum 2023 by BookNet Canada
Redefining the book supply chain: A glimpse into the future - Tech Forum 2023Redefining the book supply chain: A glimpse into the future - Tech Forum 2023
Redefining the book supply chain: A glimpse into the future - Tech Forum 2023
BookNet Canada46 views
Bronack Skills - Risk Management and SRE v1.0 12-3-2023.pdf by ThomasBronack
Bronack Skills - Risk Management and SRE v1.0 12-3-2023.pdfBronack Skills - Risk Management and SRE v1.0 12-3-2023.pdf
Bronack Skills - Risk Management and SRE v1.0 12-3-2023.pdf
ThomasBronack31 views
Future of AR - Facebook Presentation by Rob McCarty
Future of AR - Facebook PresentationFuture of AR - Facebook Presentation
Future of AR - Facebook Presentation
Rob McCarty66 views
Webinar : Desperately Seeking Transformation - Part 2: Insights from leading... by The Digital Insurer
Webinar : Desperately Seeking Transformation - Part 2:  Insights from leading...Webinar : Desperately Seeking Transformation - Part 2:  Insights from leading...
Webinar : Desperately Seeking Transformation - Part 2: Insights from leading...
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And... by ShapeBlue
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...
ShapeBlue120 views
This talk was not generated with ChatGPT: how AI is changing science by Elena Simperl
This talk was not generated with ChatGPT: how AI is changing scienceThis talk was not generated with ChatGPT: how AI is changing science
This talk was not generated with ChatGPT: how AI is changing science
Elena Simperl34 views
The Coming AI Tsunami.pptx by johnhandby
The Coming AI Tsunami.pptxThe Coming AI Tsunami.pptx
The Coming AI Tsunami.pptx
johnhandby14 views
What is Authentication Active Directory_.pptx by HeenaMehta35
What is Authentication Active Directory_.pptxWhat is Authentication Active Directory_.pptx
What is Authentication Active Directory_.pptx
HeenaMehta3515 views
Initiating and Advancing Your Strategic GIS Governance Strategy by Safe Software
Initiating and Advancing Your Strategic GIS Governance StrategyInitiating and Advancing Your Strategic GIS Governance Strategy
Initiating and Advancing Your Strategic GIS Governance Strategy
Safe Software198 views
Discover Aura Workshop (12.5.23).pdf by Neo4j
Discover Aura Workshop (12.5.23).pdfDiscover Aura Workshop (12.5.23).pdf
Discover Aura Workshop (12.5.23).pdf
Neo4j20 views
LLMs in Production: Tooling, Process, and Team Structure by Aggregage
LLMs in Production: Tooling, Process, and Team StructureLLMs in Production: Tooling, Process, and Team Structure
LLMs in Production: Tooling, Process, and Team Structure
Aggregage65 views
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or... by ShapeBlue
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
ShapeBlue209 views
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」 by PC Cluster Consortium
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」
PCCC23:日本AMD株式会社 テーマ1「AMD Instinct™ アクセラレーターの概要」

「GraphDB徹底入門」〜構造や仕組み理解から使いどころ・種々のGraphDBの比較まで幅広く〜

  • 1. Graph DB GraphDB doryokujin +WEB ( Tokyo.Webmining #9-2)
  • 2. [Me] doryokujin 2 2 33 [Company] 1
  • 3. [ ] MongoDB JP TokyoWebMining MongoDB [ ] MongoDB MongoDB GraphDB
  • 4. #1 [MongoTokyo] Mongo DB Congerence in Japan 2011 03 01 10gen 3 … http://www.10gen.com/conferences/ mongotokyo2011
  • 5. #2 [gihyo ] gihyo.jp 2 DocumentDB GraphDB NoSQL
  • 6. Graph Graph Graph DB Graph Traversal Graph DB Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph Tinker Pop Gremlin, Blueprints, Pipes, Rexster, Mutant
  • 7. Graph Graph Graph Graph DB Graph Traversal Graph DB Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph Tinker Pop Gremlin, Blueprints, Pipes, Rexster, Mutant
  • 8. Graph: Graph Graph DB Graph
  • 9. Graph [Graph] Dots Lines vertices edges 1 (relationship) Dots Lines Graph
  • 10. Undirected Graph [ (Undirected) Graph] Vertices: Edges: (relationship) (symmetric)
  • 11. Directed Graph [ (Directed) Graph] Vertices: Edges: (relationship) (asymmetric)
  • 12. Directed / Underected Graph friend follow friend follow follow friend follow [Facebook] [Twitter] ”Undirected Graph” Follow ”Directed Graph” ” ” ” ” ”friends” ”follow”
  • 13. Single-Relational Graph Single-Relational Structures → Undirected / Directed Graph Single-Relatinal 1 Graph
  • 14. Single-Relational Graph friend follow friend follow follow friend follow [Facebook] [Twitter] ”Undirected Graph” Follow ”Directed Graph” ”Facebook ” ”Twitter ” ”friends” ”follow”
  • 15. Single-Relational Reply num:5 Reply Block num:5 Reply DM num:5 num:1 RT RT Reply DM num:2 num:2 num:2 num:1 [Twitter] Graph ”Directed Graph” ”Twitter ” ”Reply”,”RT”,”DM”,”Block”
  • 16. *Facebook Flickr lives_in is is is follow lives_in friend is share * friend share follow follow is [ ] lives_in Undirected Directed is is is lives_in
  • 17. Multi-Relational Graph Multi-Relational Structures lives_in: User → Country Share: Facebook → Flikcr
  • 18. Multi-Relational Reply Reply Block DM Reply RT RT Reply DM [Twitter] ”Twitter ” ”Reply”,”RT”,”DM”,”Block”
  • 19. Multi-Relational *Facebook Flickr lives_in has has has follow lives_in friend has share * has friend share follow lives_in [Multi-Relatinal Graph] has has has lives_in
  • 20. Property Graph Property Graph Multi-Relational Graph (Property) Graph DB Graph 1 key/value id id_A follow id id_B follow 100 follow 500 follower 200 date 2011/01/23 follower 1000
  • 21. Property Graph Reply num:5 Reply Block num:5 Reply DM num:5 num:1 RT RT Reply DM num:2 num:2 num:2 num:1 Graph ”Property Graph” ”Twitter ” ”Reply”,”RT”,”DM”,”Block” ”num”
  • 22. Property Graph name doryokujin sex man lives_in birth 1985/05/14 has has id id_B follow follow 1000 follower 2000 lives_in date 2011/01/23 friend has friend date 2011/01/23 has friend follow follow date 2010/03/23 date 2011/01/23 name full name mail xxx@yyy address zzz lives_in id id_A follow 100 follower 200 has has date 2010/03/23 lives_in
  • 23. Graph The Graph Traversal Pattern
  • 24. Property Graph Property Graph Graph Property Graph Graph DB Tinker Pop Hyper Graph
  • 25. Graph DB Gragh Graph Graph DB Graph Traversal Graph DB Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph Tinker Pop Gremlin, Blueprints, Pipes, Rexster, Mutant
  • 26. Graph DB: Property Graph DB “Graph DB”
  • 27. Graph DB [ DB ≠ Graph DB] Graph DB DB Graph DB
  • 28. RDB Graph [Relatinal Database] A outV inV A B B C A C C D D D A
  • 29. Document DB Graph [Document Database] A { A : { out : [B, C], in : [D] } B : { in : [A] B C } C : { out : [D], in : [A] } D : { out : [A], in : [C] D } }
  • 30. XML DB Graph [XML Database] A <graphml> <graph> <node id=A /> <node id=B /> B C <node id=C /> <edge source=A target=B /> <edge source=A target=C /> <edge source=C target=D /> <edge source=D target=A /> </graph> D </graphml>
  • 31. Graph DB [ ] “A graph database is any storage system that provides index-free adjacency” The Graph Traversal Programming Pattern (“adjacent”) ( “index-free” )
  • 32. Non-Graph DB and Index-Based Adjacency B E 1. A 3. (B,C) A A B C B, C E D, E D E 2. C D log_2(n) (B,C) time cost
  • 33. Graph DB and Index-Free Adjacency ‣ ”Mini - Index” B E ‣ 1. 1 A (B,C) ‣ C D id id_B follow 1000 follower 2000
  • 34. Property (key/value) The Graph Traversal Programming Pattern
  • 35. GraphDB: Graph Traversal Graph DB Graph DB Query
  • 36. Graph DB Query Graph Query = Graph Traversal Traversal = Root Graph Graph Traversal (Root) Index-Free Adjacency
  • 37. private  void  printFriends(  Node  person  ) {        Traverser  traverser  =  person.traverse(                Order.BREADTH_FIRST,    //                  StopEvaluator.END_OF_GRAPH,  //  Graph                ReturnableEvaluator.ALL_BUT_START_NODE,  //  Root  Node                MyRelationshipTypes.KNOWS,  //  ”KNOWS”                Direction.OUTGOING  );  //          for  (  Node  friend  :  traverser  )        {      //   Node ”name”                System.out.println(  friend.getProperty(  "name"  )  );        } Neo4j Wiki }
  • 38. 1 3 1 2 Trinity Morpheus Cypher Agent  Smith Neo4j Wiki
  • 39. private  void  findHackers(  Node  startNode  ) Neo4j Wiki {        Traverser  traverser  =  startNode.traverse(                Order.BREADTH_FIRST,  //                  StopEvaluator.END_OF_GRAPH,  //  Graph                new  ReturnableEvaluator()  //                  {                        public  boolean  isReturnableNode(  TraversalPosition  currentPosition  )                        {                                Relationship  rel  =  currentPosition.lastRelationshipTraversed();                                if  (  rel  !=  null  &&  rel.isType(  MyRelationshipTypes.CODED_BY  )  )                                {                                        return  true;  //  “CODED_BY”                                  }                                return  false;  //                          }                },  //   2                MyRelationshipTypes.CODED_BY,  Direction.OUTGOING,  //                  MyRelationshipTypes.KNOWS,  Direction.OUTGOING  );  //          for  (  Node  hacker  :  traverser  )        {                TraversalPosition  position  =  traverser.currentPosition();                System.out.println(  "At  depth  "  +  position.depth()  +  "  =>  "                        +  hacker.getProperty(  "name"  )  );        } ∴  At  depth  4  =>  The  Architect
  • 40. Graph DB [Data Locality] [Local Search, Social Network] 2 [Transition] Web [Recommendation]
  • 41. [Graph Problems] [Shortest Path] 2 GraphDB Traversal Neo4jrb
  • 42. Graph DB ” ” 10 ”Knows” Tables, Documents, Key/Value Model GraphDB Union, Intersection, Join
  • 43. Graph DB [ ] Property Graph Index-Free Adjacency Graph Query = Graph Traversal Data Locality
  • 44. Graph DB Graph Graph Graph DB Graph Traversal Graph DB Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph Tinker Pop Gremlin, Blueprints, Pipes, Rexster, Mutant
  • 45. Neo4j
  • 46. Neo4j [ ] HP Java AGPLv3 2003 24 8 2009 VC ACID Propety Graph Model / Gremlin Lucene
  • 47. Neo4j [Language Binding - Framework] Python - Django Ruby - Ruby on Rails Clojure Scala Groovy - Griffin / Grails Java - Spring Framework Ruby Ruby Java
  • 48. Neo4j [Tools] Shell Shell Graph Traverse Indexing neo4j-server Neo4j REST API Admin tools Online BackUp Neoclipse Neo4j ↑ Batch Insert
  • 49. Neo4j [ver. 1.2] 1.2 Neo4j Server REST API Admin Interface High Availability Kernel
  • 50. sones
  • 51. sones [ ] HP C# AGPLv3 2011 VC ACID REST Interface Property Graph Model / Gremlin : Property Hyper Graph Graph Query Language(GQL)
  • 52. sones [GQL] SQL Traversal Cheat Sheet Query • FROM User SELECT User.Friends.Friends.Name // aggregation • SELECT COUNT(User.Friends) • SELECT User.Friends.Random(2) • SELECT User.Friends.Name.Substring(2,5)
  • 54. Orient DB [ ] HP Java Apache2.0 1997 C++ → Java Document-Graph DB ACID Shell / REST Interface Propety Graph Model / Gremlin
  • 55. Orient DB [Document-Graph DB] [ ] Orient DB Object DB Key/Value Server Document DB // DATABASE OPEN ODatabaseDocumentTx db = new ODatabaseDocumentTx("remote:localhost/petshop").open ("admin", "admin"); // Document ODocument doc = new ODocument(db, "Person"); doc.field( "name", "Luke" ); doc.field( "surname", "Skywalker" ); doc.field( "city", new ODocument(db, "City").field("name","Rome").field("country", "Italy") );               // Transaction doc.save(); db.close();
  • 56. Orient DB [Document-Graph DB] OGraphVertex OGraphEdge OGraphElement ODocumentWrapper Document SQL SELECT FROM OGraphVertex WHERE outEdges CONTAINS ( label = 'knows' ) //7 ”knows” SELECT FROM OGraphVertex WHERE outEdges TRAVERSE(0,7,'out,outEdges') ( @class = 'OGraphEdge' and label = 'knows' )
  • 57. Orient DB [Language Binding Using Binary Protocol] Java C PHP JRuby (Ruby: soon) [Language Binding Using REST Protocol] Python Java Script
  • 59. InfoGrid [ ] HP JAVA AGPLv3 ACID REST Interface MeshObject Graph MeshBase _GDB = StoreMeshBase.create(_MySQLStore); MeshObject _xkcd = _GDB.getMeshObjectLifecycleManager ().createMeshObject(); _xkcd.setProperty("Name", "xkcd"); _xkcd.setProperty("Url", "http://www.xkcd.com"); _xkcd.relate(_good)
  • 61. Infinite Graph [ ] HP C++ Academic and Start Up 2010 6 Distributed Graph DB ↑Objectivity/DB: distributed database server
  • 63. Graph DB: Data SQL Like GraphDB License Language Protocol Gremlin Binding Model Query REST/ Property Ruby, Python, Neo4j AGPLv3 Java Yes Scala,... - JSON Graph REST/ Property sones AGPLv3 C# JSON Graph Yes - Yes (XML) (+Extend) REST/ Property PHP, Jruby, OrientDB Apache2.0 Java Yes Python, JS,... Yes JSON Graph Property REST/ Info Grid AGPLv3 Java Graph? - - - JSON (MeshObject) Infinite Property Product C++ - - - - Graph Graph
  • 64. Graph DB [ ] Graph DB Neo4j Open Source Social Graph Software Not Ready Yet Graph DB Hypergtaph: PropertyGraph HyperGraph Pregel: bulk synchronous parallel model Distributed DB Google FlockDB: Distributed DB for storing adjancency lists Twitter
  • 65. Tinker Pop Graph Graph Graph DB Graph Traversal Graph DB Neo4j, Sones, InfoGrid, OrientDB, InfiniteGraph Tinker Pop Gremlin, Blueprints, Pipes, Rexster, Mutant
  • 67. Tinker Pop [Tinker Pop] HP Property Graph Model GraphDB Blueprints: A Property Graph Model Interface Gremlin: A Graph Traversal Language Pipes: A Data Flow Framework using Process Graphs Rexster: A RESTful Graph Shell Mutant: A Poly-ScriptEngine ScriptEngine
  • 70. BluePrints [ ] HP GraphDB ”JDBC” Property Graph Model GraphDB [Now] Tinker Graph: in-memory property graph model Sail: Open RDF Neo4j, Orient DB, sones, ... [Future] Redis Infinite Graph, Dex
  • 71. BluePrints GraphDB Graph graph = new Neo4jGraph("/tmp/graph/neo4j"); // Graph graph = new OrientGraph("/tmp/graph/orientdb"); Vertex a = graph.addVertex(null); Vertex b = graph.addVertex(null); a.setProperty("name","marko"); b.setProperty("name","aaron"); Edge e = graph.addEdge(null,a,b,"knows"); e.setProperty("since",2010); graph.shutdown();
  • 72. BluePrints Transaction graph.startTransaction(); try{   Vertex luca = graph.addVertex(null);   luca.setProperty( "name", "Luca" );   Vertex marko = graph.addVertex(null);   marko.setProperty( "name", "Marko" );   Edge lucaKnowsMarko = graph.addEdge(null, luca, marko,"knows");   graph.stopTransaction(Conclusion.SUCCESS); } catch( Exception e ) {   graph.stopTransaction(Conclusion.FAILURE); }
  • 74. Gremlin [ ] HP Gremlin = Graph Programing Language Blueprints GraphDB Shell GraphDB Query Java + Groovy
  • 75. Gremlin Property Graph Basic Graph Traversals
  • 76. doryokujin$ ./gremlin.sh ,,,/ (o o) -----oOOo-(_)-oOOo----- gremlin>  g  =  TinkerGraphFactory.createTinkerGraph() ==>tinkergraph[vertices:6  edges:6]  // 6 6 gremlin>  g.class ==>class   com.tinkerpop.blueprints.pgm.impls.tg.TinkerGraph gremlin>  //   gremlin>  g.V ==>v[3] ==>v[2] ... gremlin>  //   gremlin>  g.E ==>e[10][4-­‐created-­‐>5] ==>e[7][1-­‐knows-­‐>2] ==>e[9][1-­‐created-­‐>3] ... Getting Srarted
  • 77. gremlin>  v  =  g.v(1)  //  id=1   ==>v[1] gremlin>  v.keys()  //   ==>age ==>name gremlin>  v.values()  //   ==>29 ==>marko gremlin>  v.name  +  '  is  '  +  v.age  +  '  years  old.' ==>marko  is  29  years  old. gremlin>  //  id=1,  name=marko   gremlin>  v.outE ==>e[7][1-­‐knows-­‐>2] ==>e[9][1-­‐created-­‐>3] ==>e[8][1-­‐knows-­‐>4] gremlin>  //   gremlin>  v.outE.weight ==>0.5 ==>0.4 ==>1.0 Getting Srarted
  • 78. gremlin>  //  id=1 1.0 gremlin>  v.outE{it.weight  <  1.0}.inV ==>v[2] ==>v[3] gremlin>  //   gremlin>  list  =  []                                                           gremlin>  v.outE{it.weight  <  1.0}.inV  >>  list ==>v[2] ==>v[3] gremlin>  //  list property  maps gremlin>  list.collect{  it.map()  } ==>{name=vadas,  age=27} ==>{name=lop,  lang=java} gremlin>  //  list gremlin>  list.inE()               ==>e[7][1-­‐knows-­‐>2] ==>e[9][1-­‐created-­‐>3] ... Getting Srarted
  • 79. gremlin>  list.inE{it.label=='knows'}    //   'knows' ==>e[7][1-­‐knows-­‐>2] gremlin>  list.inE()[[label:'knows']]  //   ==>e[7][1-­‐knows-­‐>2] gremlin>  list.inE()[[label:'knows']].outV.name  // :name   ==>marko Getting Srarted ~20000ms:  g.V.outE{it['label']=='followed_by'}.inV.outE{it['label']=='followed_by'}.inV.outE                      {it['label']=='followed_by'}.inV  >>-­‐1 ~9000ms:    g.V.outE{it.label=='followed_by'}.inV.outE{it.label=='followed_by'}.inV.outE                    {it.label=='followed_by'}.inV  >>-­‐1 ~8500ms:    g.V.outE{it.getLabel()=='followed_by'}.inV.outE{it.getLabel()=='followed_by'}.inV.outE                            {it.getLabel()=='followed_by'}.inV  >>-­‐1 ~6000ms:    g.V.outE[[label:'followed_by']].inV.outE[[label:'followed_by']].inV.outE                      [[label:'followed_by']].inV  >>-­‐1 ClosureFilterPipe vs. PropertyFIlterPipe
  • 81. Pipes [ ] HP Pipes = Data Flow Framework Pipes Graph Traversal 1 1 Pipes filtering, splitting, merging, traversing,...
  • 82. Gremlin g:id-v('a')/outE[@label='knows']/inV/outE[@label='develops']/inV/@name Pipe pipe1 = new VertexEdgePipe(Step.OUT_EDGES); Pipe pipe2 = new LabelFilterPipe("knows", Filter.NOT_EQUALS); Pipe pipe3 = new EdgeVertexPipe(Step.IN_VERTEX); Pipe pipe4 = new VertexEdgePipe(Step.OUT_EDGES); Pipe pipe5 = new LabelFilterPipe("develops", Filter.NOT_EQUALS); Pipe pipe6 = new EdgeVertexPipe(Step.IN_VERTEX); Pipe pipe7 = new PropertyPipe("name"); Pipe pipeline = new Pipeline (pipe1,pipe2,pipe3,pipe4,pipe5,pipe6,pipe7); pipeline.setStarts(new SingleIterator(graph.getVertex("a")); for(String name : pipeline) {   System.out.println(name); } A Graph Processing Stack
  • 83. Pipes Pipes public  class  NumCharsPipe  extends  AbstractPipe<String,Integer>  {    public  Integer  processNextStart()  {        String  word  =  this.starts.next();        return  word.length();    } } A Graph Processing Stack
  • 85. Rexster [ ] HP Rexster = A RESTful Graph Shell Blueprints GraphDB RESTful API (JSON) Gremlin
  • 86. > http://localhost:8182/examplegraph/vertices/b {   "version":"0.1",   "results": {     "_type":"vertex",     "_id":"b",     "name":"aaron",     "type":"person"   },   "query_time":0.1537 } A Graph Processing Stack // g:key-v('name','DARK STAR')[0]: Usin gGremlin Code > http://localhost:8182/gratefulgraph/traversals/gremlin? script=g:key-v%28%27name%27,%27DARK%20STAR%27%29[0] {    "results":  [{        "_type":"vertex",        "_id":"89",        "name":"DARK  STAR",        "song_type":"original",        "performances":219,        "type":"song"}    ],    "query_time":6.753024,    "success":true,    "version" } Using Gremilin
  • 88. Mutant [ ] HP Mutant = A Poly-ScriptEngine ScriptEngine JVM Script Engine
  • 89. Mutant Console marko:~/software/mutant$  ./mutant.sh              //          oO  ~~-­‐_ ___m(___m___~.___    MuTanT  0.1-­‐SNAPSHOT _|__|__|__|__|__|          [  ?h  =  help  ] [gremlin]  gremlin  0.6-­‐SNAPSHOT [Groovy]  Groovy  Scripting  Engine  2.0 [ruby]  JSR  223  JRuby  Engine  1.5.5 [ECMAScript]  Mozilla  Rhino  1.6  release  2 [AppleScript]  AppleScriptEngine  1.0 mutant[gremlin]>  $x  :=  12 [12] mutant[gremlin]>  ?x mutant[AppleScript]>  ?x mutant[Groovy]>  $x 12 mutant[Groovy]>  ?x mutant[ruby]>  $x 12 mutant[ruby]>  ?x mutant[ECMAScript]>  $x 12 Basic Examples
  • 90. [ ] Graph DB Graph DB Graph Partitioning Pregel Neo4j
  • 91. … ※ Graph DB http://snap.stanford.edu/data/index.html