Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Spin-Seeback Effect: a review

  • Login to see the comments

Spin-Seeback Effect: a review

  1. 1. Spin-Seebeck Effect Dongwook Go Department of Physics, POSTECH
  2. 2. References Review article - Gerrit E. W. Bauer et al., Spin caloritronics, Nature Materials 11, 391 (2012). Theory references - J. Xiao et al., Theory of magnon-driven spin Seebeck effect, Phys. Rev. B 81, 214418 (2010). - Hiroto Adachi et al., Theory of the spin Seebeck effect, Rep. Prog. Phys. 76, 036501 (2013). Experiment references - K. Uchida et al., Observation of the spin Seebeck effect, Nature, 455, 778 (2008). - C. M. Jarowski et al., Observation of the spin-Seebeck effect in a ferromagnetic semiconductor, Nature Materials, 9, 898 (2010). - K. Uchida et al., Spin Seebeck insulator, Nature Materials, 9, 894 (2010). - K. Uchida et al., Observation of longitudinal spin-Seebeck effect in magnetic insulators, Appl. Phys. Lett. 97, 172205 (2010). - Hiroto Adachi et al., Gigantic enhancement of spin Seebeck effect by phonon drag, Appl. Phys. Lett. 97, 252506 (2010). - C. M. Jarowski et al., Spin-Seebeck Effect: A Phonon Driven Spin Distribution, Phys. Rev. Lett. 106, 186601 (2011). - K. Uchida et al., Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect, J. Appl. Phys. 111, 103903 (2012).
  3. 3. Overview : spin Seebeck effect K. Uchida et al., J. Appl. Phys. 111, 103903 (2012).
  4. 4. Measurement Mechanism : inverse spin Hall effect S. Maekawa, Nature Materials 8, 777 (2009). Spin Hall effect Inverse spin Hall effect K. Uchida et al., J. Appl. Phys. 111, 103903 (2012). Paramagnetic material used for the experiment should have large spin-orbit coupling, i.e. Pt, Ta…
  5. 5. Spin Seebeck Effect : sample configuration K. Uchida et al., J. Appl. Phys. 111, 103903 (2012).
  6. 6. Spin dependent two-current model Gerrit E. W. Bauer et al., Nature Materials 11, 391 (2012).
  7. 7. Breakdown of conduction electron scenario  Length scale relevant to the experiment : ~ 1 mm Typical spin-flip diffusion length in metal : ~ 1-10 nm  Spin Seebeck coefficient does NOT depend on the conductance of the material.  Spin Seebeck effect is observed in magnetic insulator, i.e. YIG (YFeO), La-YIG (LaYFeO). β†’ Magnon scenario Spin current is not only carried by conduction electrons, but also by magnons.
  8. 8. Spin Current : Conduction electron contribution Magnon contribution Gerrit E. W. Bauer et al., Nature Materials 11, 391 (2012). Hiroto Adachi et al., Rep. Prog. Phys. 76, 036501 (2013).
  9. 9. Local picture of thermal spin injection by magnons Hiroto Adachi et al., Rep. Prog. Phys. 76, 036501 (2013). Gerrit E. W. Bauer and Yaraslav Tserkovnyak, Physics, 4, 40 (2011) Conduction electron interacts with the magnon and changes its spin by 1. From the coupling between the magnon and conduction electron, spin current is pumped (spin pumping).
  10. 10. Local picture of thermal spin injection by magnons Hiroto Adachi et al., Rep. Prog. Phys. 76, 036501 (2013). F-side magnetization : Landau-Lifshitz-Gilbert (LLG) equation , N-side conduction electron : Bloch equation ,
  11. 11. Local picture of thermal spin injection by magnons Hiroto Adachi et al., Rep. Prog. Phys. 76, 036501 (2013). Perturbative calculation treating 𝐉 𝐬𝐝 as small variable leads to , where Alternative expression : (spin conservation)
  12. 12. Local picture of thermal spin injection by magnons Hiroto Adachi et al., Rep. Prog. Phys. 76, 036501 (2013). K. Uchida et al., J. Appl. Phys. 111, 103903 (2012). 𝑇𝐹 = 𝑇 𝑁 leads to 𝐼𝑠 = 0 (?) Local temperature should be replaced by some effective temperature π‘‡βˆ— 𝑇 𝑁 = 𝑇 𝑁 βˆ— = π‘‡π‘™π‘œπ‘βˆ’π‘’π‘ž = π‘‡π‘œπ‘π‘‘βˆ’π‘β„Ž 𝑇𝐹 = 𝑇𝐹 βˆ— = 𝑇 π‘šπ‘Žπ‘” or π‘‡π‘Žπ‘π‘βˆ’π‘β„Ž
  13. 13. Magnon-phonon-mediated thermal spin pumping and spin Seebeck effect Hiroto Adachi et al., Rep. Prog. Phys. 76, 036501 (2013).
  14. 14. Detection of Longitudinal Spin-Seebeck Effect in Ferromagnetic Insulator, YIG (YFeO) K. Uchida et al., J. Appl. Phys. 111, 103903 (2012).
  15. 15. Detection of Longitudinal Spin-Seebeck Effect in Ferromagnetic Insulator, YIG (YFeO) K. Uchida et al., J. Appl. Phys. 111, 103903 (2012). Strong evidence of phonon-drag mechanism! 1) Low temperature β†’ Suppression of phonon unklapp process β†’ increased phonon lifetime 2) Zero kelvin β†’ signal vanishes (the third law of thermodynamics) 3) Phonon-drag spin Seebeck effect must have a peak at low temperature.
  16. 16. Detection of Transverse Spin-Seebeck Effect in Ferromagnetic Insulator, La:YIG (LaYFeO) K. Uchida et al., J. Appl. Phys. 111, 103903 (2012).
  17. 17. Detection of Transverse Spin-Seebeck Effect in Ferromagnetic Insulator, La:YIG (LaYFeO) K. Uchida et al., J. Appl. Phys. 111, 103903 (2012). Measuring the characteristic length via Which gets larger as temperature decreases. This can be explained from the phonon-drag scenario.
  18. 18. Detection of Transverse Spin-Seebeck Effect in Ferromagnetic Semiconductor, GaMnAs : Scratch Experiment C. M. Jarowski et al., Nature Materials, 9, 898 (2010). This scratch experiment supports the phonon scenario!
  19. 19. Detection of Transverse Spin-Seebeck Effect in Ferromagnetic Metal, π‘΅π’Š πŸ–πŸ 𝑭𝒆 πŸπŸ— K. Uchida et al., J. Appl. Phys. 111, 103903 (2012).
  20. 20. Detection of Transverse Spin-Seebeck Effect in Ferromagnetic Metal, π‘΅π’Š πŸ–πŸ 𝑭𝒆 πŸπŸ— : Acoustic spin Seebeck effect K. Uchida et al., J. Appl. Phys. 111, 103903 (2012). Magnon channel is blocked, and only phonon-mediated effect is observed.
  21. 21. Summary & Conclusion  The spin Seebeck effect generates a spin voltage as a result of a temperature gradient in ferromagnet.  In the paramagnet, the spin current is converted into an electric field due to the invserse spin Hall effect.  The spin Seebeck effect is not only observed in ferromagnetic metal, but also in ferromagnetic semiconductor and insulator.  Theoretical model is based on the thermal spin pumping mediated by magnon and phonon, which is supported by many experiments.
  22. 22. Summary & Conclusion

Γ—