Polymers in ConfinementDavid N BunckTopical Review28 November 2012
Polymer SizeHiemenz and Lodge, Polymer Chemistry, 2nd ed.Milsev, J Phys Condens Matter, 2011, 23, 103101.de Gennes, Scalin...
Blah Blah BlobF(R)kBT=R2aN2 +adN2Rdelasticityexcludedvolumefree energyRR0∝ aNaD⎛⎝⎜⎞⎠⎟2 3τR ∝ a2N2 aD⎛⎝⎜⎞⎠⎟1 3a - size of m...
Confined PolymerizationM2(bdc)2(dabco)2M = Zn2+ (1a)M = Cu2+ (1b)CO2HCO2HbdcNNdabcoEndo et al., Chem Commun., 2005, 5968.0...
Protected PolymerizationKitagawa et al., ACIE, 2007, 46, 4987.Mn = 9.3 kDaMw = 48.3 kDaPDI = 5.19Mn = 5.8 kDaMw = 10.9 kDa...
Rollin’ on DubsKitagawa et al., JACS, 2008, 130, 6781.lnW = lnW0 +AβE0⎛⎝⎜⎞⎠⎟2M2(bdc)2(dabco)2M = Zn2+ (1)CO2HCO2HbdcNNted1...
1H-13C HETCOR SSNMRKitagawa et al., JACS, 2008, 130, 6781.1 ms5 msEmpty FrameworkCO2HCO2HbdcNNtedPS Filled
Single Chain DynamicsKitagawa et al., JACS, 2008, 130, 6781.PS (Bulk) PS (MOF)Ph: 180° flip - k1 ~105s-1rotation - k2 ~108...
Other MonomersKitagawa et al., Macromolecules, 2008, 41, 87.M2(bdc)2(dabco)2M = Zn2+ (2b)M = Cu2+ (1b)CO2HCO2HbdcNNdabcoCu...
Staying RegularKitagawa et al., Macromolecules, 2008, 41, 87.10.8 Å7.5 Å5.7 Å4.8 x 4.3 ÅPhMeCO2MeESR: 2.6 mmol kg-10.48 mm...
On the SideKitagawa et al., ACIE, 2006, 45, 4112.Mita et al., Nature, 2005, 436, 238.OMeOHCO2MeH12 h, r.t.conditionsa) MOF...
PEO’dKitagawa et al., Nat Commun, 2010, 1:83.chain-chainassemblies1, 2, 3, 4OOnPEO
Pyrrole the Dice[(Me3Sn)3FeIII(CN)6]n [(Ppy)(Me3Sn)3FeII(CN)6]nHNFischer et al., ACIE, 1989, 28, 1263.Calleja et al., ACIE...
Poly(styrene) in AluminaRussell et al, Nat Mater, 2007, 6, 961.Al2O3 Template: 15 nm x 120 μmRg(PS) ~45 nm (591 kDa)Capill...
Confinement Effects on RgRussell et al, Nat Mater, 2007, 6, 961.Unpreturbed along pore axis
Crystal ClearMijangos et al., Macromolecules, 2012, 45, 1517.PEO, 20 nmOOnPEOReduced TcE53S47
For Take AwayKitagawa system well studiedOther opportunities for porous templates
Further Reading• MOF– Kitagawa et al., Chem Soc Rev, 2009, 38, 1228.– Uemura, Bull Chem Soc Jpn, 2011, 84, 1169.• Template...
Upcoming SlideShare
Loading in …5
×

Polymers in Confinement

501 views

Published on

Summary of studies looking at polymers confined to nanosized pores. Includes studies in metal-organic frameworks and other porous templates.

Published in: Technology, Spiritual
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
501
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • For a good solvent!
  • See similar Mn and PDI for 1b
  • Use TGA to determine how many molecules of styrene are adsorbed to the more surface. Evacuate at 30 kPA to remove monomer, but keep the stuff in the pores.
  • Extract with hot DMF
  • MeCN solution of PEG was used to impregnate the materials. Also see increases in mobility in SSNMR (not showing data, because already shown a ton).
  • Fernando is going to say this isnt a MOF. Paramagnetic to diamagnetic
  • Mw = 591 kDa.
  • Polymers in Confinement

    1. 1. Polymers in ConfinementDavid N BunckTopical Review28 November 2012
    2. 2. Polymer SizeHiemenz and Lodge, Polymer Chemistry, 2nd ed.Milsev, J Phys Condens Matter, 2011, 23, 103101.de Gennes, Scaling Concepts in Polymer Physics,Cornell University Press: 1979.R = aN3 5 Rg ∝ N3 5(Rg ∝ N0.589)a - size of monomeric unitN - number of unitsEnd-to-End Distance Radius of Gyration
    3. 3. Blah Blah BlobF(R)kBT=R2aN2 +adN2Rdelasticityexcludedvolumefree energyRR0∝ aNaD⎛⎝⎜⎞⎠⎟2 3τR ∝ a2N2 aD⎛⎝⎜⎞⎠⎟1 3a - size of monomeric unitN - number of unitsrelaxation timeFconf = TNaD⎛⎝⎜⎞⎠⎟5 3confinementenergyMilsev, J Phys Condens Matter, 2011, 23, 103101.Yeomans et al., Soft Matter, 2012, 8, 4306.J* - threshold flow rate
    4. 4. Confined PolymerizationM2(bdc)2(dabco)2M = Zn2+ (1a)M = Cu2+ (1b)CO2HCO2HbdcNNdabcoEndo et al., Chem Commun., 2005, 5968.0.1 M NaOH1.2. CHCl3 / MeOHcyclesPS1a Mn = 56.2 kDaPDI = 1.66ControlPDI = 4.68AIBNNNCNCNAIBNESR: 21 d, 70 °C7.5 x 7.5 Å 8.2 x 6.0 Å
    5. 5. Protected PolymerizationKitagawa et al., ACIE, 2007, 46, 4987.Mn = 9.3 kDaMw = 48.3 kDaPDI = 5.19Mn = 5.8 kDaMw = 10.9 kDaPDI = 1.88Cross-linkedM2(bdc)2(dabco)2M = Zn2+ (1a)M = Cu2+ (1b)CO2HCO2HbdcNNdabco0.9 molsadsorbed
    6. 6. Rollin’ on DubsKitagawa et al., JACS, 2008, 130, 6781.lnW = lnW0 +AβE0⎛⎝⎜⎞⎠⎟2M2(bdc)2(dabco)2M = Zn2+ (1)CO2HCO2HbdcNNted10 μmDubinin-RadushkevichVp = 0.637 cm3g-1Vp = 0.292 cm3g-1ρ = 0.55 g cm-3(vs 1.04)(vs 0.969)?W0 = saturated N2 pressureZirkel et al., Macromolecules, 1994, 27, 4639.
    7. 7. 1H-13C HETCOR SSNMRKitagawa et al., JACS, 2008, 130, 6781.1 ms5 msEmpty FrameworkCO2HCO2HbdcNNtedPS Filled
    8. 8. Single Chain DynamicsKitagawa et al., JACS, 2008, 130, 6781.PS (Bulk) PS (MOF)Ph: 180° flip - k1 ~105s-1rotation - k2 ~108s-1librations - k3 ~1010s-1Flipping gives rise to singularities (89 vs 94%)τc =τc0 expEaRT1T1∝1τcEa = 2.10 kcal mol-1
    9. 9. Other MonomersKitagawa et al., Macromolecules, 2008, 41, 87.M2(bdc)2(dabco)2M = Zn2+ (2b)M = Cu2+ (1b)CO2HCO2HbdcNNdabcoCu2+Zn2+Cu2+OHOHOO2c 2dAdsorbed Styrene10.8 Å7.5 Å5.7 Å4.8 x 4.3 Å
    10. 10. Staying RegularKitagawa et al., Macromolecules, 2008, 41, 87.10.8 Å7.5 Å5.7 Å4.8 x 4.3 ÅPhMeCO2MeESR: 2.6 mmol kg-10.48 mmol kg-1Soluton FRP: 10-4- 10-5mmol kg-1
    11. 11. On the SideKitagawa et al., ACIE, 2006, 45, 4112.Mita et al., Nature, 2005, 436, 238.OMeOHCO2MeH12 h, r.t.conditionsa) MOF, 12 h, r.t.b) OONa30 d, r.t.30 d, 70 °CMn = 850 DaMw = 4800 DaPDI = 5.65(PS Standards)traceyellow oil
    12. 12. PEO’dKitagawa et al., Nat Commun, 2010, 1:83.chain-chainassemblies1, 2, 3, 4OOnPEO
    13. 13. Pyrrole the Dice[(Me3Sn)3FeIII(CN)6]n [(Ppy)(Me3Sn)3FeII(CN)6]nHNFischer et al., ACIE, 1989, 28, 1263.Calleja et al., ACIE, 1989, 28, 1265. Kitagawa et al., Chem Mater, 2009, 21, 4096.SBET90 m2g-1PANI-SBA-15NH2SBET (M2 g-1) H+(S cm-1)SBA-15 739 -Monomer Soak 461 0.1Vapor Dif. 443 0.55In situ 565 1.67Balkus Jr et al., Micro and Meso Mater, 2005, 81, 321.
    14. 14. Poly(styrene) in AluminaRussell et al, Nat Mater, 2007, 6, 961.Al2O3 Template: 15 nm x 120 μmRg(PS) ~45 nm (591 kDa)Capillary rise intothe pores114 → 2880 kDaQ - integrated intensityπr2Δl = −KΔ Q Q0( )η ∝ N1.5PredictedMeasured3.4 x 10-3Pa s (15 nm)4.4 x 10-6Pa s (bulk)
    15. 15. Confinement Effects on RgRussell et al, Nat Mater, 2007, 6, 961.Unpreturbed along pore axis
    16. 16. Crystal ClearMijangos et al., Macromolecules, 2012, 45, 1517.PEO, 20 nmOOnPEOReduced TcE53S47
    17. 17. For Take AwayKitagawa system well studiedOther opportunities for porous templates
    18. 18. Further Reading• MOF– Kitagawa et al., Chem Soc Rev, 2009, 38, 1228.– Uemura, Bull Chem Soc Jpn, 2011, 84, 1169.• Templates– Anonietti et al., Chem Mater, 2008, 20, 738.• Encapsulated Conducting Polymers– Cardin, Adv Mater, 2002, 14, 553.

    ×