In a World of Biased Search Engines

Dirk Lewandowski
Dirk LewandowskiProfessor at Hamburg University of Applied Sciences
IN A WORLD OF BIASED SEARCH ENGINES
Prof. Dr. Dirk Lewandowski
Hamburg University of Applied Sciences, Germany
Keynote at the 18th International Conference on Perspectives in Business
Informatics Research, Katowice, Poland, 25 September 2019
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
1
https://www.wsj.com/articles/amazon-changed-search-algorithm-in-ways-that-boost-its-own-products-11568645345
https://medium.com/global-editors-network/a-closer-look-at-googles-plan-to-spotlight-original-reporting-ad9b89899cd6
16 September 2019 19 September 2019
GOOGLE SERVES MORE THAN
2.000.000.000.000 QUERIES PER YEAR.
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
AGENDA
1. Introduction: Search engine result pages
2. Search engine bias: a multifaceted concept
3. Search engine bias in action
4. Search engine bias: Is this just a “Google Problem”?
5. Conclusion
3
INTRODUCTION: SEARCH ENGINE
RESULTS PAGES
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
SEARCH ENGINE RESULTS PAGES
5
1 2 3
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
SERPS ON THE DESKTOP VS. ON THE MOBILE
6
1 2
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
WHAT MAKES USERS CLICK?
Users’ visual attention and selection behaviour
are influenced by
• Result position
• Visible area “above the fold”
• The relevance of the results description
(“snippet”)
• Size and design of the snippet (attraction)
Users trust search engines:
• Results are seen as accurate and trustworthy
(Purcell, Brenner & Raine 2012)
• Search engine ranking even is seen a criterion
for trustworthiness (Westerwick 2013)
7
SEARCH ENGINE BIAS: A MULTIFACETED
CONCEPT
8
"Search is a reflection of the content that
exists on the web.“
(Google 2016)
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
10
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
11
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
12
https://searchengineland.com/googles-results-no-longer-in-denial-over-holocaust-265832
(2016)
"Search is a reflection of the content that
exists on the web. The fact that hate sites
appear in Search results in no way means that
Google endorses these views.“
(Google 2016)
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
WHAT IS SEARCH ENGINE BIAS?
„Search engine bias is the tendency of a search engine to prefer certain results
through the assumptions inherent in its algorithms.“ (Lewandowski, 2017)
Three “distinct, albeit sometimes overlapping“ concerns (Tavani, 2012):
“(1) search-engine technology is not neutral, but instead has embedded features in its
design that favor some values over others;
(2) major search engines systematically favor some sites (and some kinds of sites) over
others in the lists of results they return in response to user search queries; and
(3) search algorithms do not use objective criteria in generating their lists of results for
search queries.”
14
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
BIASES IN SEARCH ENGINE RESULTS
Biases in regards to…
• Race (Noble, 2018)
• Gender (Noble, 2018; Otterbacher et al., 2017)
• Confirmatory information to queries regarding conspiracy theories (Ballatore, 2015)
• Promotion of hate speech (Bar-Ilan, 2006)
• Health information (White and Horvitz, 2009)
15
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
BIAS ON THE WEB
16Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54–61. https://doi.org/10.1145/3209581
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
BIAS IN ORGANIC RESULTS IS JUST THE TIP OF THE
ICEBERG
Facets of search engine bias
1. Search engine (engineering) – Ranking
2. User – Cognitive biases
3. Search engine providers’ self-interests – Design of search engine result pages
4. External influences – Search Engine Optimization (SEO)
17
SEARCH ENGINE BIAS IN ACTION (1):
RANKING
18
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
19
SEARCH ENGINE BIAS IN ACTION (2):
COGNITIVE BIASES
20
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
COGNITIVE BIASES
We use heuristics to make decision.
Some examples of cognitive biases:
• Confirmation bias
• Position Bias
• Domain Bias (popular sources)
• Attractiveness Bias (keywords found in snippet)
These biases contribute to users’ result selection (Liu et al., 2014).
21
Liu, Y., Wang, C., Zhou, K., Nie, J., Zhang, M., & Labs, Y. (2014). From Skimming to Reading : A Two-stage Examination Model for
Web Search. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge
Management (pp. 849–858). https://doi.org/10.1145/2661829.2661907
SEARCH ENGINE BIAS IN ACTION (3):
SEARCH ENGINE PROVIDERS’ SELF-
INTERESTS
22
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
THE EUROPEAN COMMISSION‘S DECISIONS ON GOOGLE’S
ANTI-COMPETITIVE PRACTICES
2017: Google Shopping (2.4 billion Euros)
2018: Android (4.34 billion Euros)
2019: Online advertisements (1.49 billion Euros)
[probably to be continued]
23
SELF-INTEREST (1): VERTICAL RESULTS
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
GOOGLE SHOPPING
25
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
26
Lewandowski, D., & Sünkler, S. (2013). Representative online study to evaluate the revised commitments proposed by Google on
21 October 2013 as part of EU competition investigation AT.39740-Google Report for Germany.
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
27
Lewandowski, D., & Sünkler, S. (2013). Representative online study to evaluate the revised commitments proposed by Google on
21 October 2013 as part of EU competition investigation AT.39740-Google Report for Germany.
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
28
Lewandowski, D., & Sünkler, S. (2013). Representative online study to evaluate the revised commitments proposed by Google on
21 October 2013 as part of EU competition investigation AT.39740-Google Report for Germany.
SELF-INTEREST (2): ADS LABELLING
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
SNIPPETS: ORGANIC RESULTS AND ADS
30
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
SAMPLE TASK: MARK ALL THE ADVERTISEMENTS ON THIS
SEARCH ENGINE RESULTS PAGE
N=1,000
35% marked all ads correctly.
18% marked at least some organic results as ads.
Still, more than 90% of users regard themselves as
competent when it comes to using search engines.
31
Lewandowski, D., Kerkmann, F., Rümmele, S., & Sünkler, S. (2018). An empirical investigation on search engine ad disclosure.
Journal of the Association for Information Science and Technology, 69(3), 420–437. https://doi.org/10.1002/asi.23963
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
RESULTS FROM THE EXPERIMENT
N=1,000
Users not able to distinguish
ads from organic results clicked
on the first ad about twice as
often (40.3% vs. 21.6%).
32
Lewandowski, D. (2017). Users’ Understanding of Search Engine Advertisements. Journal of Information Science Theory and
Practice, 5(4), 6–25. https://doi.org/10.1633/JISTaP.2017.5.4.1
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
UNDERSTANDING OF ADS INFLUENCES USERS’ VISUAL
BEHAVIOUR
33
Schultheiß, S.; Lewandowski, D.: How users’ knowledge of advertisements influences their viewing and selection behaviour in
search engines [submitted]
knowledge of ads scrolled into the area “below the fold” less often.465
Q14: “Imagine you want to find information about Work-&-Travel programs in Australia.
A Google search returned the following results. Please click on a result.”
little knowledge of ads comprehensive knowledge of ads
Figure 4: Heatmaps of subjects with little vs comprehensive knowledge of ads
5.4 Differences between the PC and smartphone condition
Figure 5 shows the fixation rates on ads for both devices. For "Text ad top 1",
n=960 is the sum of all text ads in the first position that the subjects saw on the PC.470
Each of the 20 PC SERPs of the experiment contained a “Text ad top 1”, whereby
Textadsbelowthefoldabovethefold
Textadsbelowthefoldabovethefold
SEARCH ENGINE BIAS IN ACTION (4):
EXTERNAL INFLUENCES
34
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
A RESULT OF SEARCH ENGINE OPTIMIZATION?
35
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
2 SEARCH ENGINE OPTIMIZATION (SEO)
External influences
• Search Engine Optimization industry now worth more than 65 billion USD (Sullivan,
2016).
36
Sullivan, L. (2016). Report: Companies Will Spend $65 Billion On SEO In 2016.
http://www.mediapost.com/publications/article/273956/report-companies-will-spend-65-billion-on-seo-in.html
Search Engine
Providers
Search Engine
Result Page
Content
ProvidersUsers
Search Engine
Optimizers
SEARCH ENGINE BIAS: IS THIS JUST A
“GOOGLE PROBLEM”?
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
AMAZON’S RANKING
38
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
AMAZON’S RANKING
39
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
RANKING IN A LIBRARY SEARCH SYSTEM
40
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
WHO WILL FACE (POTENTIAL) PROBLEMS WITH SEARCH
ENGINE BIAS?
As soon as search systems become platforms (i.e., allowing third-party data into the
system),
• data providers will have in interest in promoting their data
• platform providers will have an interest in favouring certain results
Some examples:
• Marketplaces (e.g., Amazon – “Amazon SEO”)
• Content aggregators (e.g., Lexis-Nexis, Expedia)
• Library information systems (commercial like Primo, not-for-profit like Econbiz)
• Academic search systems (e.g., Google Scholar – ”Academic Search Engine
Optimization”)
41
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
WHAT CAN WE DO ABOUT IT?
Search system providers, developers and product owners
• Be aware of external influences that can affect the results
• De-bias search results
• Let users see contrasting views on a topic in search results
• Let users re-rank results
• Give users tools to explore and analyse search results sets
Politics and regulation
• Force search systems to be transparent and fair
• Foster alternatives to existing search engines by funding infrastructure (cf.
Lewandowski, 2019)
Users
• Understand that information literacy is key to being an informed citizen in modern
society
42
Lewandowski, D. (2019). The web is missing an essential part of infrastructure: an Open Web Index. Communications of the
ACM, 62(4), 24–27. https://doi.org/10.1145/3312479
CONCLUSION
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
KEY TAKEAWAYS
• Search engine bias is a severe problem, as search engines are a major means of
knowledge acquisition.
• Search engine bias – or, bias on the Web more generally – is a complex problem where
there probably is no one best solution solving everything.
• Search engine bias may occur with all search systems.
44
THANK YOU
Dirk Lewandowski
Hamburg University of Applied Sciences, Hamburg, Germany
dirk.lewandowski@haw-hamburg.de
www.searchstudies.org/dirk
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
REFERENCES (1)
Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54–61. https://doi.org/10.1145/3209581
Ballatore, A. (2015). Google chemtrails: A methodology to analyze topic representation in search engine results. First
Monday, 20(7). Retrieved from http://www.firstmonday.org/ojs/index.php/fm/article/view/5597/4652
Bar-Ilan, J. (2006). Web links and search engine ranking: The case of Google and the query ‘Jew’. Journal of the
American Society for Information & Techology, 57(12), 1581–1589.
Lewandowski, D. (2017). Is Google Responsible for Providing Fair and Unbiased Results? In M. Taddeo & L. Floridi
(Eds.), The Responsibilities of Online Service Providers (Vol. 31, pp. 61–77). Berlin Heidelberg: Springer.
https://doi.org/10.1007/978-3-319-47852-4_4
Lewandowski, D. (2017). Users’ Understanding of Search Engine Advertisements. Journal of Information Science Theory
and Practice, 5(4), 6–25. https://doi.org/10.1633/JISTaP.2017.5.4.1
Lewandowski, D. (2019). The web is missing an essential part of infrastructure: an Open Web Index. Communications of
the ACM, 62(4), 24–27. https://doi.org/10.1145/3312479
Lewandowski, D., Kerkmann, F., Rümmele, S., & Sünkler, S. (2018). An empirical investigation on search engine ad
disclosure. Journal of the Association for Information Science and Technology, 69(3), 420–437.
https://doi.org/10.1002/asi.23963
Lewandowski, D., & Sünkler, S. (2013). Representative online study to evaluate the revised commitments proposed by
Google on 21 October 2013 as part of EU competition investigation AT.39740-Google Report for Germany.
Liu, Y., Wang, C., Zhou, K., Nie, J., Zhang, M., & Labs, Y. (2014). From Skimming to Reading : A Two-stage Examination
Model for Web Search. In Proceedings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management (pp. 849–858). https://doi.org/10.1145/2661829.2661907
46
FAKULTÄT DMI, DEPARTMENT INFORMATION
Prof. Dr. Dirk Lewandowski
REFERENCES (2)
Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York, USA: New York
University Press.
Otterbacher, J., Bates, J., & Clough, P. (2017). Competent Men and Warm Women. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems - CHI ’17 (pp. 6620–6631). New York, New York, USA: ACM Press.
https://doi.org/10.1145/3025453.3025727
Purcell, K., Brenner, J., & Raine, L. (2012). Search Engine Use 2012. Washington, DC. Retrieved from
http://pewinternet.org/~/media/Files/Reports/2012/PIP_Search_Engine_Use_2012.pdf
Sullivan, L. (2016). Report: Companies Will Spend $65 Billion On SEO In 2016.
http://www.mediapost.com/publications/article/273956/report-companies-will-spend-65-billion-on-seo-in.html
Tavani, H. (2012, August 27). Search Engines and Ethics. Retrieved from http://plato.stanford.edu/entries/ethics-search/
Westerwick, A. (2013). Effects of Sponsorship, Web Site Design, and Google Ranking on the Credibility of Online
Information. Journal of Computer-Mediated Communication, 18(2), 80–97. https://doi.org/10.1111/jcc4.12006
White, R. W., & Horvitz, E. (2009). Cyberchondria. ACM Transactions on Information Systems, 27(4), Article No. 23.
https://doi.org/10.1145/1629096.1629101
47
1 of 48

Recommended

Amec metrics & Internet measuring tools prmeeting2013 by mariavecino by
Amec metrics & Internet  measuring tools prmeeting2013 by mariavecinoAmec metrics & Internet  measuring tools prmeeting2013 by mariavecino
Amec metrics & Internet measuring tools prmeeting2013 by mariavecinomariavecino.com
4.9K views13 slides
Putting the L in front: from Open Data to Linked Open Data by
Putting the L in front: from Open Data to Linked Open DataPutting the L in front: from Open Data to Linked Open Data
Putting the L in front: from Open Data to Linked Open DataMartin Kaltenböck
1.7K views39 slides
Here, there, and everywhere: Correlated online behaviors can lead to overesti... by
Here, there, and everywhere: Correlated online behaviors can lead to overesti...Here, there, and everywhere: Correlated online behaviors can lead to overesti...
Here, there, and everywhere: Correlated online behaviors can lead to overesti...Ира Пустовит
342 views10 slides
Analysing search engine data on socially relevant topics by
Analysing search engine data on socially relevant topicsAnalysing search engine data on socially relevant topics
Analysing search engine data on socially relevant topicsDirk Lewandowski
191 views36 slides
Are Ads on Google search engine results pages labeled clearly enough? by
Are Ads on Google search engine results pages labeled clearly enough?Are Ads on Google search engine results pages labeled clearly enough?
Are Ads on Google search engine results pages labeled clearly enough?Dirk Lewandowski
910 views23 slides
Alternatives to Google by
Alternatives to GoogleAlternatives to Google
Alternatives to GoogleDirk Lewandowski
1.2K views39 slides

More Related Content

Similar to In a World of Biased Search Engines

The Impacts of Data on the Online Advertising Industry by
The Impacts of Data on the Online Advertising IndustryThe Impacts of Data on the Online Advertising Industry
The Impacts of Data on the Online Advertising IndustryMutlu Dogus Yildirim
844 views122 slides
Web Search For Web Searching Engine Essay by
Web Search For Web Searching Engine EssayWeb Search For Web Searching Engine Essay
Web Search For Web Searching Engine EssayKaren Nelson
2 views43 slides
More scalable and valuable market intelligence with deep text analytics - Mea... by
More scalable and valuable market intelligence with deep text analytics - Mea...More scalable and valuable market intelligence with deep text analytics - Mea...
More scalable and valuable market intelligence with deep text analytics - Mea...MeaningCloud
1.9K views50 slides
week1a.pptx by
week1a.pptxweek1a.pptx
week1a.pptxTamtamNatam1
2 views74 slides
internet marketing by
internet marketinginternet marketing
internet marketingGaganpreet Singh
1.5K views103 slides
000 Welcome to Unit IV discussion about environmental scree.docx by
000 Welcome to Unit IV discussion about environmental scree.docx000 Welcome to Unit IV discussion about environmental scree.docx
000 Welcome to Unit IV discussion about environmental scree.docxhoney725342
3 views14 slides

Similar to In a World of Biased Search Engines(20)

The Impacts of Data on the Online Advertising Industry by Mutlu Dogus Yildirim
The Impacts of Data on the Online Advertising IndustryThe Impacts of Data on the Online Advertising Industry
The Impacts of Data on the Online Advertising Industry
Web Search For Web Searching Engine Essay by Karen Nelson
Web Search For Web Searching Engine EssayWeb Search For Web Searching Engine Essay
Web Search For Web Searching Engine Essay
Karen Nelson2 views
More scalable and valuable market intelligence with deep text analytics - Mea... by MeaningCloud
More scalable and valuable market intelligence with deep text analytics - Mea...More scalable and valuable market intelligence with deep text analytics - Mea...
More scalable and valuable market intelligence with deep text analytics - Mea...
MeaningCloud1.9K views
000 Welcome to Unit IV discussion about environmental scree.docx by honey725342
000 Welcome to Unit IV discussion about environmental scree.docx000 Welcome to Unit IV discussion about environmental scree.docx
000 Welcome to Unit IV discussion about environmental scree.docx
honey7253423 views
Leticia_Ferrer_Mur_Team11_Semester3_1_BA_project by Leticia Ferrer Mur
Leticia_Ferrer_Mur_Team11_Semester3_1_BA_projectLeticia_Ferrer_Mur_Team11_Semester3_1_BA_project
Leticia_Ferrer_Mur_Team11_Semester3_1_BA_project
Leticia Ferrer Mur125 views
Prof. Eric T. Bradlow & Steve Ennen of Wharton, OMS 2010 Keynote on Social M... by wimisteve
Prof. Eric T. Bradlow  & Steve Ennen of Wharton, OMS 2010 Keynote on Social M...Prof. Eric T. Bradlow  & Steve Ennen of Wharton, OMS 2010 Keynote on Social M...
Prof. Eric T. Bradlow & Steve Ennen of Wharton, OMS 2010 Keynote on Social M...
wimisteve490 views
What Is Enterprise 2.0 - From WTF To FTW by David Terrar
What Is Enterprise 2.0 - From WTF To FTWWhat Is Enterprise 2.0 - From WTF To FTW
What Is Enterprise 2.0 - From WTF To FTW
David Terrar869 views
Monitoring Healthcare Innovation: A Case Study in Using OWL, Linked Data and ... by Mark Birbeck
Monitoring Healthcare Innovation: A Case Study in Using OWL, Linked Data and ...Monitoring Healthcare Innovation: A Case Study in Using OWL, Linked Data and ...
Monitoring Healthcare Innovation: A Case Study in Using OWL, Linked Data and ...
Mark Birbeck722 views
The Viral Green by Jake Aull
The Viral GreenThe Viral Green
The Viral Green
Jake Aull2.8K views
Convergence Analytics v2 by Jay McCarthy
Convergence Analytics v2Convergence Analytics v2
Convergence Analytics v2
Jay McCarthy579 views
eyeDemand "Demystifying RTB: Keys to a Successful Campaign" by IAB Canada
eyeDemand "Demystifying RTB: Keys to a Successful Campaign"eyeDemand "Demystifying RTB: Keys to a Successful Campaign"
eyeDemand "Demystifying RTB: Keys to a Successful Campaign"
IAB Canada1K views
Towards Better Online Personalization: A Framework for Empirical Evaluation a... by Stijn Geuens
Towards Better Online Personalization: A Framework for Empirical Evaluation a...Towards Better Online Personalization: A Framework for Empirical Evaluation a...
Towards Better Online Personalization: A Framework for Empirical Evaluation a...
Stijn Geuens215 views
The Need for and fundamentals of an Open Web Index by Dirk Lewandowski
The Need for and fundamentals of an Open Web IndexThe Need for and fundamentals of an Open Web Index
The Need for and fundamentals of an Open Web Index
Dirk Lewandowski230 views

More from Dirk Lewandowski

EIN ANDERER BLICK AUF GOOGLE: Wie interpretieren Nutzer/innen die Suchergebni... by
EIN ANDERER BLICK AUF GOOGLE: Wie interpretieren Nutzer/innen die Suchergebni...EIN ANDERER BLICK AUF GOOGLE: Wie interpretieren Nutzer/innen die Suchergebni...
EIN ANDERER BLICK AUF GOOGLE: Wie interpretieren Nutzer/innen die Suchergebni...Dirk Lewandowski
319 views45 slides
Künstliche Intelligenz bei Suchmaschinen by
Künstliche Intelligenz bei SuchmaschinenKünstliche Intelligenz bei Suchmaschinen
Künstliche Intelligenz bei SuchmaschinenDirk Lewandowski
466 views28 slides
Google Assistant, Alexa & Co.: Wie sich die Welt der Suche verändert by
Google Assistant, Alexa & Co.: Wie sich die Welt der Suche verändertGoogle Assistant, Alexa & Co.: Wie sich die Welt der Suche verändert
Google Assistant, Alexa & Co.: Wie sich die Welt der Suche verändertDirk Lewandowski
278 views27 slides
Suchverhalten und die Grenzen von Suchdiensten by
Suchverhalten und die Grenzen von SuchdienstenSuchverhalten und die Grenzen von Suchdiensten
Suchverhalten und die Grenzen von SuchdienstenDirk Lewandowski
173 views10 slides
Können Nutzer echte Suchergebnisse von Werbung in Suchmaschinen unterscheiden? by
Können Nutzer echte Suchergebnisse von Werbung in Suchmaschinen unterscheiden?Können Nutzer echte Suchergebnisse von Werbung in Suchmaschinen unterscheiden?
Können Nutzer echte Suchergebnisse von Werbung in Suchmaschinen unterscheiden?Dirk Lewandowski
265 views12 slides
Search Engine Bias - sollen wir Googles Suchergebnissen vertrauen? by
Search Engine Bias - sollen wir Googles Suchergebnissen vertrauen?Search Engine Bias - sollen wir Googles Suchergebnissen vertrauen?
Search Engine Bias - sollen wir Googles Suchergebnissen vertrauen?Dirk Lewandowski
1.2K views45 slides

More from Dirk Lewandowski(20)

EIN ANDERER BLICK AUF GOOGLE: Wie interpretieren Nutzer/innen die Suchergebni... by Dirk Lewandowski
EIN ANDERER BLICK AUF GOOGLE: Wie interpretieren Nutzer/innen die Suchergebni...EIN ANDERER BLICK AUF GOOGLE: Wie interpretieren Nutzer/innen die Suchergebni...
EIN ANDERER BLICK AUF GOOGLE: Wie interpretieren Nutzer/innen die Suchergebni...
Dirk Lewandowski319 views
Künstliche Intelligenz bei Suchmaschinen by Dirk Lewandowski
Künstliche Intelligenz bei SuchmaschinenKünstliche Intelligenz bei Suchmaschinen
Künstliche Intelligenz bei Suchmaschinen
Dirk Lewandowski466 views
Google Assistant, Alexa & Co.: Wie sich die Welt der Suche verändert by Dirk Lewandowski
Google Assistant, Alexa & Co.: Wie sich die Welt der Suche verändertGoogle Assistant, Alexa & Co.: Wie sich die Welt der Suche verändert
Google Assistant, Alexa & Co.: Wie sich die Welt der Suche verändert
Dirk Lewandowski278 views
Suchverhalten und die Grenzen von Suchdiensten by Dirk Lewandowski
Suchverhalten und die Grenzen von SuchdienstenSuchverhalten und die Grenzen von Suchdiensten
Suchverhalten und die Grenzen von Suchdiensten
Dirk Lewandowski173 views
Können Nutzer echte Suchergebnisse von Werbung in Suchmaschinen unterscheiden? by Dirk Lewandowski
Können Nutzer echte Suchergebnisse von Werbung in Suchmaschinen unterscheiden?Können Nutzer echte Suchergebnisse von Werbung in Suchmaschinen unterscheiden?
Können Nutzer echte Suchergebnisse von Werbung in Suchmaschinen unterscheiden?
Dirk Lewandowski265 views
Search Engine Bias - sollen wir Googles Suchergebnissen vertrauen? by Dirk Lewandowski
Search Engine Bias - sollen wir Googles Suchergebnissen vertrauen?Search Engine Bias - sollen wir Googles Suchergebnissen vertrauen?
Search Engine Bias - sollen wir Googles Suchergebnissen vertrauen?
Dirk Lewandowski1.2K views
Wie Suchmaschinen die Inhalte des Web interpretieren by Dirk Lewandowski
Wie Suchmaschinen die Inhalte des Web interpretierenWie Suchmaschinen die Inhalte des Web interpretieren
Wie Suchmaschinen die Inhalte des Web interpretieren
Dirk Lewandowski1.5K views
Perspektiven eines Open Web Index by Dirk Lewandowski
Perspektiven eines Open Web IndexPerspektiven eines Open Web Index
Perspektiven eines Open Web Index
Dirk Lewandowski1.6K views
Wie entwickeln sich Suchmaschinen heute, was kommt morgen? by Dirk Lewandowski
Wie entwickeln sich Suchmaschinen heute, was kommt morgen?Wie entwickeln sich Suchmaschinen heute, was kommt morgen?
Wie entwickeln sich Suchmaschinen heute, was kommt morgen?
Dirk Lewandowski1.5K views
Internet-Suchmaschinen: Aktueller Stand und Entwicklungsperspektiven by Dirk Lewandowski
Internet-Suchmaschinen: Aktueller Stand und EntwicklungsperspektivenInternet-Suchmaschinen: Aktueller Stand und Entwicklungsperspektiven
Internet-Suchmaschinen: Aktueller Stand und Entwicklungsperspektiven
Dirk Lewandowski871 views
Ordinary Search Engine Users Assessing Difficulty, Effort and Outcome for Sim... by Dirk Lewandowski
Ordinary Search Engine Users Assessing Difficulty, Effort and Outcome for Sim...Ordinary Search Engine Users Assessing Difficulty, Effort and Outcome for Sim...
Ordinary Search Engine Users Assessing Difficulty, Effort and Outcome for Sim...
Dirk Lewandowski1.3K views
Verwendung von Skalenbewertungen in der Evaluierung von Suchmaschinen by Dirk Lewandowski
Verwendung von Skalenbewertungen in der Evaluierung von SuchmaschinenVerwendung von Skalenbewertungen in der Evaluierung von Suchmaschinen
Verwendung von Skalenbewertungen in der Evaluierung von Suchmaschinen
Dirk Lewandowski833 views
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (3) by Dirk Lewandowski
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (3)Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (3)
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (3)
Dirk Lewandowski646 views
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (2) by Dirk Lewandowski
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (2)Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (2)
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (2)
Dirk Lewandowski595 views
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (1) by Dirk Lewandowski
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (1)Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (1)
Neue Entwicklungen bei Suchmaschinen und deren Relevanz für Bibliotheken (1)
Dirk Lewandowski571 views
Medientage 2013: Die Zukunft der Suche by Dirk Lewandowski
Medientage 2013: Die Zukunft der SucheMedientage 2013: Die Zukunft der Suche
Medientage 2013: Die Zukunft der Suche
Dirk Lewandowski1.1K views
Suchmaschinen: Googlerisierung der Gesellschaft by Dirk Lewandowski
Suchmaschinen: Googlerisierung der GesellschaftSuchmaschinen: Googlerisierung der Gesellschaft
Suchmaschinen: Googlerisierung der Gesellschaft
Dirk Lewandowski1.5K views

Recently uploaded

How to think like a threat actor for Kubernetes.pptx by
How to think like a threat actor for Kubernetes.pptxHow to think like a threat actor for Kubernetes.pptx
How to think like a threat actor for Kubernetes.pptxLibbySchulze1
5 views33 slides
The Dark Web : Hidden Services by
The Dark Web : Hidden ServicesThe Dark Web : Hidden Services
The Dark Web : Hidden ServicesAnshu Singh
5 views24 slides
Building trust in our information ecosystem: who do we trust in an emergency by
Building trust in our information ecosystem: who do we trust in an emergencyBuilding trust in our information ecosystem: who do we trust in an emergency
Building trust in our information ecosystem: who do we trust in an emergencyTina Purnat
109 views18 slides
Affiliate Marketing by
Affiliate MarketingAffiliate Marketing
Affiliate MarketingNavin Dhanuka
17 views30 slides
IETF 118: Starlink Protocol Performance by
IETF 118: Starlink Protocol PerformanceIETF 118: Starlink Protocol Performance
IETF 118: Starlink Protocol PerformanceAPNIC
394 views22 slides
Marketing and Community Building in Web3 by
Marketing and Community Building in Web3Marketing and Community Building in Web3
Marketing and Community Building in Web3Federico Ast
14 views64 slides

Recently uploaded(10)

How to think like a threat actor for Kubernetes.pptx by LibbySchulze1
How to think like a threat actor for Kubernetes.pptxHow to think like a threat actor for Kubernetes.pptx
How to think like a threat actor for Kubernetes.pptx
LibbySchulze15 views
The Dark Web : Hidden Services by Anshu Singh
The Dark Web : Hidden ServicesThe Dark Web : Hidden Services
The Dark Web : Hidden Services
Anshu Singh5 views
Building trust in our information ecosystem: who do we trust in an emergency by Tina Purnat
Building trust in our information ecosystem: who do we trust in an emergencyBuilding trust in our information ecosystem: who do we trust in an emergency
Building trust in our information ecosystem: who do we trust in an emergency
Tina Purnat109 views
IETF 118: Starlink Protocol Performance by APNIC
IETF 118: Starlink Protocol PerformanceIETF 118: Starlink Protocol Performance
IETF 118: Starlink Protocol Performance
APNIC394 views
Marketing and Community Building in Web3 by Federico Ast
Marketing and Community Building in Web3Marketing and Community Building in Web3
Marketing and Community Building in Web3
Federico Ast14 views
PORTFOLIO 1 (Bret Michael Pepito).pdf by brejess0410
PORTFOLIO 1 (Bret Michael Pepito).pdfPORTFOLIO 1 (Bret Michael Pepito).pdf
PORTFOLIO 1 (Bret Michael Pepito).pdf
brejess04109 views

In a World of Biased Search Engines

  • 1. IN A WORLD OF BIASED SEARCH ENGINES Prof. Dr. Dirk Lewandowski Hamburg University of Applied Sciences, Germany Keynote at the 18th International Conference on Perspectives in Business Informatics Research, Katowice, Poland, 25 September 2019
  • 2. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 1 https://www.wsj.com/articles/amazon-changed-search-algorithm-in-ways-that-boost-its-own-products-11568645345 https://medium.com/global-editors-network/a-closer-look-at-googles-plan-to-spotlight-original-reporting-ad9b89899cd6 16 September 2019 19 September 2019
  • 3. GOOGLE SERVES MORE THAN 2.000.000.000.000 QUERIES PER YEAR.
  • 4. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski AGENDA 1. Introduction: Search engine result pages 2. Search engine bias: a multifaceted concept 3. Search engine bias in action 4. Search engine bias: Is this just a “Google Problem”? 5. Conclusion 3
  • 6. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski SEARCH ENGINE RESULTS PAGES 5 1 2 3
  • 7. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski SERPS ON THE DESKTOP VS. ON THE MOBILE 6 1 2
  • 8. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski WHAT MAKES USERS CLICK? Users’ visual attention and selection behaviour are influenced by • Result position • Visible area “above the fold” • The relevance of the results description (“snippet”) • Size and design of the snippet (attraction) Users trust search engines: • Results are seen as accurate and trustworthy (Purcell, Brenner & Raine 2012) • Search engine ranking even is seen a criterion for trustworthiness (Westerwick 2013) 7
  • 9. SEARCH ENGINE BIAS: A MULTIFACETED CONCEPT 8
  • 10. "Search is a reflection of the content that exists on the web.“ (Google 2016)
  • 11. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 10
  • 12. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 11
  • 13. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 12 https://searchengineland.com/googles-results-no-longer-in-denial-over-holocaust-265832 (2016)
  • 14. "Search is a reflection of the content that exists on the web. The fact that hate sites appear in Search results in no way means that Google endorses these views.“ (Google 2016)
  • 15. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski WHAT IS SEARCH ENGINE BIAS? „Search engine bias is the tendency of a search engine to prefer certain results through the assumptions inherent in its algorithms.“ (Lewandowski, 2017) Three “distinct, albeit sometimes overlapping“ concerns (Tavani, 2012): “(1) search-engine technology is not neutral, but instead has embedded features in its design that favor some values over others; (2) major search engines systematically favor some sites (and some kinds of sites) over others in the lists of results they return in response to user search queries; and (3) search algorithms do not use objective criteria in generating their lists of results for search queries.” 14
  • 16. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski BIASES IN SEARCH ENGINE RESULTS Biases in regards to… • Race (Noble, 2018) • Gender (Noble, 2018; Otterbacher et al., 2017) • Confirmatory information to queries regarding conspiracy theories (Ballatore, 2015) • Promotion of hate speech (Bar-Ilan, 2006) • Health information (White and Horvitz, 2009) 15
  • 17. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski BIAS ON THE WEB 16Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54–61. https://doi.org/10.1145/3209581
  • 18. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski BIAS IN ORGANIC RESULTS IS JUST THE TIP OF THE ICEBERG Facets of search engine bias 1. Search engine (engineering) – Ranking 2. User – Cognitive biases 3. Search engine providers’ self-interests – Design of search engine result pages 4. External influences – Search Engine Optimization (SEO) 17
  • 19. SEARCH ENGINE BIAS IN ACTION (1): RANKING 18
  • 20. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 19
  • 21. SEARCH ENGINE BIAS IN ACTION (2): COGNITIVE BIASES 20
  • 22. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski COGNITIVE BIASES We use heuristics to make decision. Some examples of cognitive biases: • Confirmation bias • Position Bias • Domain Bias (popular sources) • Attractiveness Bias (keywords found in snippet) These biases contribute to users’ result selection (Liu et al., 2014). 21 Liu, Y., Wang, C., Zhou, K., Nie, J., Zhang, M., & Labs, Y. (2014). From Skimming to Reading : A Two-stage Examination Model for Web Search. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (pp. 849–858). https://doi.org/10.1145/2661829.2661907
  • 23. SEARCH ENGINE BIAS IN ACTION (3): SEARCH ENGINE PROVIDERS’ SELF- INTERESTS 22
  • 24. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski THE EUROPEAN COMMISSION‘S DECISIONS ON GOOGLE’S ANTI-COMPETITIVE PRACTICES 2017: Google Shopping (2.4 billion Euros) 2018: Android (4.34 billion Euros) 2019: Online advertisements (1.49 billion Euros) [probably to be continued] 23
  • 26. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski GOOGLE SHOPPING 25
  • 27. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 26 Lewandowski, D., & Sünkler, S. (2013). Representative online study to evaluate the revised commitments proposed by Google on 21 October 2013 as part of EU competition investigation AT.39740-Google Report for Germany.
  • 28. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 27 Lewandowski, D., & Sünkler, S. (2013). Representative online study to evaluate the revised commitments proposed by Google on 21 October 2013 as part of EU competition investigation AT.39740-Google Report for Germany.
  • 29. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 28 Lewandowski, D., & Sünkler, S. (2013). Representative online study to evaluate the revised commitments proposed by Google on 21 October 2013 as part of EU competition investigation AT.39740-Google Report for Germany.
  • 31. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski SNIPPETS: ORGANIC RESULTS AND ADS 30
  • 32. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski SAMPLE TASK: MARK ALL THE ADVERTISEMENTS ON THIS SEARCH ENGINE RESULTS PAGE N=1,000 35% marked all ads correctly. 18% marked at least some organic results as ads. Still, more than 90% of users regard themselves as competent when it comes to using search engines. 31 Lewandowski, D., Kerkmann, F., Rümmele, S., & Sünkler, S. (2018). An empirical investigation on search engine ad disclosure. Journal of the Association for Information Science and Technology, 69(3), 420–437. https://doi.org/10.1002/asi.23963
  • 33. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski RESULTS FROM THE EXPERIMENT N=1,000 Users not able to distinguish ads from organic results clicked on the first ad about twice as often (40.3% vs. 21.6%). 32 Lewandowski, D. (2017). Users’ Understanding of Search Engine Advertisements. Journal of Information Science Theory and Practice, 5(4), 6–25. https://doi.org/10.1633/JISTaP.2017.5.4.1
  • 34. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski UNDERSTANDING OF ADS INFLUENCES USERS’ VISUAL BEHAVIOUR 33 Schultheiß, S.; Lewandowski, D.: How users’ knowledge of advertisements influences their viewing and selection behaviour in search engines [submitted] knowledge of ads scrolled into the area “below the fold” less often.465 Q14: “Imagine you want to find information about Work-&-Travel programs in Australia. A Google search returned the following results. Please click on a result.” little knowledge of ads comprehensive knowledge of ads Figure 4: Heatmaps of subjects with little vs comprehensive knowledge of ads 5.4 Differences between the PC and smartphone condition Figure 5 shows the fixation rates on ads for both devices. For "Text ad top 1", n=960 is the sum of all text ads in the first position that the subjects saw on the PC.470 Each of the 20 PC SERPs of the experiment contained a “Text ad top 1”, whereby Textadsbelowthefoldabovethefold Textadsbelowthefoldabovethefold
  • 35. SEARCH ENGINE BIAS IN ACTION (4): EXTERNAL INFLUENCES 34
  • 36. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski A RESULT OF SEARCH ENGINE OPTIMIZATION? 35
  • 37. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski 2 SEARCH ENGINE OPTIMIZATION (SEO) External influences • Search Engine Optimization industry now worth more than 65 billion USD (Sullivan, 2016). 36 Sullivan, L. (2016). Report: Companies Will Spend $65 Billion On SEO In 2016. http://www.mediapost.com/publications/article/273956/report-companies-will-spend-65-billion-on-seo-in.html Search Engine Providers Search Engine Result Page Content ProvidersUsers Search Engine Optimizers
  • 38. SEARCH ENGINE BIAS: IS THIS JUST A “GOOGLE PROBLEM”?
  • 39. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski AMAZON’S RANKING 38
  • 40. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski AMAZON’S RANKING 39
  • 41. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski RANKING IN A LIBRARY SEARCH SYSTEM 40
  • 42. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski WHO WILL FACE (POTENTIAL) PROBLEMS WITH SEARCH ENGINE BIAS? As soon as search systems become platforms (i.e., allowing third-party data into the system), • data providers will have in interest in promoting their data • platform providers will have an interest in favouring certain results Some examples: • Marketplaces (e.g., Amazon – “Amazon SEO”) • Content aggregators (e.g., Lexis-Nexis, Expedia) • Library information systems (commercial like Primo, not-for-profit like Econbiz) • Academic search systems (e.g., Google Scholar – ”Academic Search Engine Optimization”) 41
  • 43. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski WHAT CAN WE DO ABOUT IT? Search system providers, developers and product owners • Be aware of external influences that can affect the results • De-bias search results • Let users see contrasting views on a topic in search results • Let users re-rank results • Give users tools to explore and analyse search results sets Politics and regulation • Force search systems to be transparent and fair • Foster alternatives to existing search engines by funding infrastructure (cf. Lewandowski, 2019) Users • Understand that information literacy is key to being an informed citizen in modern society 42 Lewandowski, D. (2019). The web is missing an essential part of infrastructure: an Open Web Index. Communications of the ACM, 62(4), 24–27. https://doi.org/10.1145/3312479
  • 45. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski KEY TAKEAWAYS • Search engine bias is a severe problem, as search engines are a major means of knowledge acquisition. • Search engine bias – or, bias on the Web more generally – is a complex problem where there probably is no one best solution solving everything. • Search engine bias may occur with all search systems. 44
  • 46. THANK YOU Dirk Lewandowski Hamburg University of Applied Sciences, Hamburg, Germany dirk.lewandowski@haw-hamburg.de www.searchstudies.org/dirk
  • 47. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski REFERENCES (1) Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54–61. https://doi.org/10.1145/3209581 Ballatore, A. (2015). Google chemtrails: A methodology to analyze topic representation in search engine results. First Monday, 20(7). Retrieved from http://www.firstmonday.org/ojs/index.php/fm/article/view/5597/4652 Bar-Ilan, J. (2006). Web links and search engine ranking: The case of Google and the query ‘Jew’. Journal of the American Society for Information & Techology, 57(12), 1581–1589. Lewandowski, D. (2017). Is Google Responsible for Providing Fair and Unbiased Results? In M. Taddeo & L. Floridi (Eds.), The Responsibilities of Online Service Providers (Vol. 31, pp. 61–77). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-319-47852-4_4 Lewandowski, D. (2017). Users’ Understanding of Search Engine Advertisements. Journal of Information Science Theory and Practice, 5(4), 6–25. https://doi.org/10.1633/JISTaP.2017.5.4.1 Lewandowski, D. (2019). The web is missing an essential part of infrastructure: an Open Web Index. Communications of the ACM, 62(4), 24–27. https://doi.org/10.1145/3312479 Lewandowski, D., Kerkmann, F., Rümmele, S., & Sünkler, S. (2018). An empirical investigation on search engine ad disclosure. Journal of the Association for Information Science and Technology, 69(3), 420–437. https://doi.org/10.1002/asi.23963 Lewandowski, D., & Sünkler, S. (2013). Representative online study to evaluate the revised commitments proposed by Google on 21 October 2013 as part of EU competition investigation AT.39740-Google Report for Germany. Liu, Y., Wang, C., Zhou, K., Nie, J., Zhang, M., & Labs, Y. (2014). From Skimming to Reading : A Two-stage Examination Model for Web Search. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (pp. 849–858). https://doi.org/10.1145/2661829.2661907 46
  • 48. FAKULTÄT DMI, DEPARTMENT INFORMATION Prof. Dr. Dirk Lewandowski REFERENCES (2) Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York, USA: New York University Press. Otterbacher, J., Bates, J., & Clough, P. (2017). Competent Men and Warm Women. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI ’17 (pp. 6620–6631). New York, New York, USA: ACM Press. https://doi.org/10.1145/3025453.3025727 Purcell, K., Brenner, J., & Raine, L. (2012). Search Engine Use 2012. Washington, DC. Retrieved from http://pewinternet.org/~/media/Files/Reports/2012/PIP_Search_Engine_Use_2012.pdf Sullivan, L. (2016). Report: Companies Will Spend $65 Billion On SEO In 2016. http://www.mediapost.com/publications/article/273956/report-companies-will-spend-65-billion-on-seo-in.html Tavani, H. (2012, August 27). Search Engines and Ethics. Retrieved from http://plato.stanford.edu/entries/ethics-search/ Westerwick, A. (2013). Effects of Sponsorship, Web Site Design, and Google Ranking on the Credibility of Online Information. Journal of Computer-Mediated Communication, 18(2), 80–97. https://doi.org/10.1111/jcc4.12006 White, R. W., & Horvitz, E. (2009). Cyberchondria. ACM Transactions on Information Systems, 27(4), Article No. 23. https://doi.org/10.1145/1629096.1629101 47