Effect of strain path and texture on microstructure in<br />Fe–22 wt.% Mn–0.6 wt.% C TWIP steel<br />Dierk Raabe, Ivan Gut...
Overview<br /><ul><li>Electronchannelingcontrastimaging
Twinningandtexture
Strainpatheffects
Bauschingereffects
Conclusions</li></ul>1<br />www.mpie.de<br />
2<br />EBSD: Workhardeningof TWIP steels, Fe-22Mn-0.6C (wt%)<br />Kippwinkel<br />I. Gutierrez-Urrutia, S. Zaefferer, D. R...
Overview<br /><ul><li>Electronchannelingcontrastimaging
Twinningandtexture
Strainpatheffects
Bauschingereffects
Conclusions</li></ul>3<br />www.mpie.de<br />
Influence of grain orientation on deformation twinning<br />Tensile test<br />s: 380 MPa<br />e: 0.1<br />Grain orientatio...
Influence of grain orientation on deformation twinning<br />Tensile test<br />s: 950 MPa<br />e: 0.4<br />Grain orientatio...
Influence of grain orientation on deformation twinning<br />Why twinning in these orientations?<br />Tensile test<br />s: ...
Influence of grain orientation on deformation twinning<br />Tensile test<br />s: 950 MPa<br />e: 0.4<br />twins<br />no tw...
Overview<br /><ul><li>Electronchannelingcontrastimaging
Twinningandtexture
Strainpatheffects
Bauschingereffects
Conclusions</li></ul>8<br />www.mpie.de<br />
Upcoming SlideShare
Loading in …5
×

High manganese conference korea twip steel

1,618 views

Published on

Lecture about the effects of strain path and crystallographic texture on microstructure in Fe–22 wt.% Mn–0.6 wt.% C TWIP steels using Electron Channeling Contrast Imaging (ECCI) and EBSD

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,618
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
30
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

High manganese conference korea twip steel

  1. 1. Effect of strain path and texture on microstructure in<br />Fe–22 wt.% Mn–0.6 wt.% C TWIP steel<br />Dierk Raabe, Ivan Gutierrez-Urrutia<br />Düsseldorf, Germany<br />WWW.MPIE.DE<br />d.raabe@mpie.de<br />Dierk Raabe<br />
  2. 2. Overview<br /><ul><li>Electronchannelingcontrastimaging
  3. 3. Twinningandtexture
  4. 4. Strainpatheffects
  5. 5. Bauschingereffects
  6. 6. Conclusions</li></ul>1<br />www.mpie.de<br />
  7. 7. 2<br />EBSD: Workhardeningof TWIP steels, Fe-22Mn-0.6C (wt%)<br />Kippwinkel<br />I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe; ScriptaMaterialia 61 (2009), 737<br />I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe; Materials Science and Engineering A 527 (2010), 3552<br />C. Herrera et al. Acta Materialia 59 (2011) 4653<br />Dislocations in SEM<br />
  8. 8. Overview<br /><ul><li>Electronchannelingcontrastimaging
  9. 9. Twinningandtexture
  10. 10. Strainpatheffects
  11. 11. Bauschingereffects
  12. 12. Conclusions</li></ul>3<br />www.mpie.de<br />
  13. 13. Influence of grain orientation on deformation twinning<br />Tensile test<br />s: 380 MPa<br />e: 0.1<br />Grain orientations<br />twins<br />no twins<br />IPF<br />TA<br />I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe; ScriptaMaterialia 61 (2009), 737<br />I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe; Materials Science and Engineering A 527 (2010), 3552<br />4<br />
  14. 14. Influence of grain orientation on deformation twinning<br />Tensile test<br />s: 950 MPa<br />e: 0.4<br />Grain orientations<br />twins<br />no twins<br />IPF<br />TA<br />5<br />
  15. 15. Influence of grain orientation on deformation twinning<br />Why twinning in these orientations?<br />Tensile test<br />s: 950 MPa<br />e: 0.4<br />twins<br />Local stress concentrations at GB<br />Micromechanical B.C.<br />matter<br />no twins<br />twin transfer<br />TA<br />6<br />
  16. 16. Influence of grain orientation on deformation twinning<br />Tensile test<br />s: 950 MPa<br />e: 0.4<br />twins<br />no twins<br />no twin transfer<br />TA<br />7<br />
  17. 17. Overview<br /><ul><li>Electronchannelingcontrastimaging
  18. 18. Twinningandtexture
  19. 19. Strainpatheffects
  20. 20. Bauschingereffects
  21. 21. Conclusions</li></ul>8<br />www.mpie.de<br />
  22. 22. Influence of strain path: tensile vs shear on disloc. substructure<br />Cell Block formation <br />e: 0.1<br />ND<br />SD<br /><001>//shear direction<br />9<br />
  23. 23. Influence of strain path: tensile vs shear on disloc. substructure<br />e: 0.1<br />ND<br />SD<br />Misorientation profile<br />1.2<br />1.2<br />1.2<br />2.4<br />1.7<br />B<br />B<br />B<br />B<br />B<br />B<br />B<br />B<br />B<br />2.8<br />2.3<br />1.8<br />3.6<br />10<br />
  24. 24. EBSD does not detect dislocation cells<br />Shear : e:0.3<br />ND<br />SD<br />11<br />
  25. 25. Influence of strain path: tensile vs shear on disloc. substructure<br />ECCI<br />Shear : e:0.3<br />{111} traces of shear<br />Substructures with misorientation up to 2deg, hence, visible via EBSD<br /><111>//Shear direction<br />Misorientation profile<br />12<br />I. Gutierrez-Urrutia et al. ScriptaMaterialia 61 (2009), 737<br />
  26. 26. Influence of strain path: tensile vs shear on dislocation substructure<br />Tensile: dislocation cells<br />Shear: symmetric patterning, cell blocks, shear bands<br />ND<br />SD<br />Tensile axis<br />Shear direction<br />112<br />e:0.3<br />13<br />I. Gutierrez-Urrutia et al. ScriptaMaterialia 61 (2009), 737<br />
  27. 27. Influence of strain path: tensile vs shear on disloc. substructure<br />Tensile: dislocation cells<br />Shear: symmetric patterning, cell blocks, shear bands<br />ND<br />SD<br />Tensile axis<br />Shear<br />bands<br />e:0.3<br />I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe; ScriptaMaterialia 61 (2009), 737<br />I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe; Materials Science and Engineering A 527 (2010), 3552<br />14<br />I. Gutierrez-Urrutia et al. Mater.Sc Eng. A 527 (2010) 3552<br />
  28. 28. Overview<br /><ul><li>Electronchannelingcontrastimaging
  29. 29. Twinningandtexture
  30. 30. Strainpatheffects
  31. 31. Bauschingereffects
  32. 32. Conclusions</li></ul>15<br />www.mpie.de<br />
  33. 33. Strain reversion: Bauschinger test<br />e: 0.1 + (-0.03)<br />Cell block formation is enhanced<br />112<br />16<br />I. Gutierrez-Urrutia et al. Mater.Sc Eng. A 527 (2010) 3552<br />
  34. 34. Strain reversion: Bauschinger test<br />e: 0.1 + (-0.03)<br />Cell block formation is enhanced (leading to pronounced subgrainstructure)<br />Strain reversal leads to higher misoriented dislocation substructures<br />17<br />I. Gutierrez-Urrutia et al. Mater.Sc Eng. A 527 (2010) 3552<br />
  35. 35. Strain reversion: Bauschinger test<br />e: 0.1 + (-0.03)<br />ECCI image<br />(not TEM)<br />GN boundaries<br />{111} trace<br />We identify both GN and incidental boundaries!<br />stat. boundaries<br />18<br />I. Gutierrez-Urrutia et al. Mater.Sc Eng. A 527 (2010) 3552<br />
  36. 36. Overview<br /><ul><li>Electronchannelingcontrastimaging
  37. 37. Twinningandtexture
  38. 38. Strainpatheffects
  39. 39. Bauschingereffects
  40. 40. Conclusions</li></ul>19<br />www.mpie.de<br />
  41. 41. Conclusions<br />Joint use of ECCI & EBSD <br />Unexpected deformation twinning<br />Dependence of dislocation substructure on strain path and orientation<br /><111>//deformation axis leads to planar dislocation substructures: DDWs structures in tension and Taylor lattice in shear<br /><001>//deformation axis leads to wavy dislocation substructures: cells in tension and cell block in shear<br />Strain reversal promotes cell block/subgrain formation with increased misorientation<br />Cell blocks formed by geometrically necessary boundaries along {111} planes and incidental boundaries created by statistically stored dislocations are visible via ECCI. We can estimate boundary spacings and therefore, its contribution to work-hardening.<br />20<br />I. Gutierrez-Urrutia et al. Mater.Sc Eng. A 527 (2010) 3552<br />

×