Black Holes


Published on

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Black Holes

  1. 1. 1
  2. 2. The idea of a Black hole John Michell (1783), Pierre-Simon Laplace (1796): What happens if the escape speed from an object is greater than the speed of light? If light consist of particles of matter, they would not be able to escape Dark star The cath: early 19th cent-light is a wave (a disturbance), not a particle Black hole idea forgotten …until Einstein comes along
  3. 3. M 82´s Middle Mass Black hole
  4. 4. 7
  5. 5. 8
  6. 6. 9
  7. 7. 10
  8. 8. 11
  9. 9. 12
  10. 10. 13
  11. 11. A massive star starts to collapse when it exhausts its nuclear fuel and can no longer counteract the inward pull of gravity 15
  12. 12. The crushing weight of the star´s ovelying layers implodes the core, and the star digs deeper into the fabric of space-time. 16
  13. 13. Although the star remains barely visible, its light now as a difficult time climbing out of the enormous gravity of the still-collapsing core. 17
  14. 14. The star passes through its event horizon and disappears from our universe, forming a singularity of infinite density 18
  15. 15. Agujeros negros
  16. 16. 54
  17. 17. 55
  18. 18. 56
  19. 19. 57
  20. 20. 58
  21. 21. 59
  22. 22. 60
  23. 23. 61
  24. 24. 62
  25. 25. If Black Holes Are Black, How Do We See Them? How Do We Know They are Black Holes? 63
  26. 26. La velocidad de escape de la luz desde una estrella depende tanto de la masa de la estrella como de su radio. La gravedad es una fuerza básica de la naturaleza creada entre objetos que tienen masa. La velocidad de la luz, 300.000 Km./s, es la “velocidad límite” universal Las leyes del movimiento y de la gravitación se utilizan para estudiar los efectos de los agujeros negros sobre su entorno inmediato. 64
  27. 27. If Black Holes are Black, How do We See Them ? 65
  28. 28. Black Holes Come in Two Sizes: “Stellar Mass” – 5 - 20 times the mass of the sun – Result from supernova explosion of massive star Massive (“Active Galaxies”) – Millions times the mass of the sun – Lie in centers of galaxies 66
  29. 29. 67
  30. 30. Optical images peer into central regions of other galaxies. 68
  31. 31. • Remolinos de materia alrededor de un agujero negro central. • El gas próximo a un agujero negro hace que se caliente a temperaturas de ultravioleta y rayos X. • Esto calienta el gas que lo rodea, por lo que se muestra rojo en el óptico. 69
  32. 32. Seeing Matter Disappear 70
  33. 33. Radio tells us about motions of particles in magnetic fields. Using many radio dishes allows us to see small details A portion of the Very Large Array, Socorro NM 71
  34. 34. Many black holes emit jets. Jet likely composed of electrons and positrons. Magnetic fields surrounding black hole expel material and form the jet. Interaction of jet material with magnetic field gives rise to Radio emission. 72
  35. 35. 73
  36. 36. 74
  37. 37. 75
  38. 38. Magnetic field from surrounding disk funnels material into the jet 76
  39. 39. X-rays reveal high temperatures and highly energetic phenomena. Chandra X-ray Observatory 77
  40. 40. • Los agujeros negros capturan el material estelar cercano. • Como el gas se mantiene cerca del agujero negro, lo calienta. • El gas se calienta hasta temperaturas de millones de grados. • El gas calentado a estas temperaturas deja escapar tremendas cantidades de energía en forma de rayos X. 78
  41. 41. 79
  42. 42. La materia en el disco gana energía cuando cae en el interior del agujero negro. La energía gravitacional se convierte en energía cinética. – La energía cinética se transforma en calor y rayos X. Hasta el 42% de la masa de la materia que cae se convierte en energía. Esto es, 1038 erg/s (100.000 veces más que el Sol) 80
  43. 43.  What force causes material to be pulled toward the black hole ? Gravity  Why is there a disk surrounding the black hole ? Gas flows according to rotational motion from orbit of star  What happens to the mass of the black hole as it takes in material from the companion ? Black hole mass increases  How much material is it ? (a lot or a little ?) A little (compared to mass of Companion Star)  What makes it possible for us to “see” the black hole ? The disk emits X-rays 81
  44. 44. We expect everything in the Universe to rotate. Nonrotating black holes are different from rotating ones. Non-rotating black hole Rotating black hole 82
  45. 45. • Detection of a period in GRO J1655-40 due to precession of the disk. • Este periodo de precesión concuerda con lo esperado para el arrastre de imagen de espacio-tiempo alrededor de un agujero negro. 83
  46. 46. Cen A is known to be a peculiar galaxy with strong radio emission. Optical image of Cen A Chandra image of Cen A But it is also a strong X-ray emitter, and has an X-ray jet. 84
  47. 47. • Black Holes with masses a few hundred to a few thousand times the mass of the sun have been found outside the central regions of a number of galaxies. Optical and X-ray images of NGC 253 • Often found in Starburst galaxies. • May be precursors to Active Galaxies. 85
  48. 48. Gamma Rays reveal the highest energy phenomena Jets in active galaxies emit gamma-rays as well as radio. Compton Gamma-Ray Observatory 86
  49. 49. Active Galaxies Seyferts - viewing the jet sideways Gamma rays are extension of thermal emission seen in X-ray. Blazars - looking down the jet Highly variable gamma-ray luminosity Gamma rays arise from lower energy photons gaining energy from fast moving electrons in the jet. 87
  50. 50. 88
  51. 51. 89
  52. 52. 90
  53. 53. 91
  54. 54. Middle mass black holes 92
  55. 55. • Los agujeros negros son a menudo parte de un sistema de estrellas binarias, en los que dos estrellas giran una en torno a la otra. • Lo que vemos desde la Tierra es una estrella visible que orbita alrededor de lo que parece ser la nada. • Podemos deducir la masa del agujero negro por la órbita de la estrella visible que gira en torno a él. • Cuanto mayor es un agujero negro, mayor es el empuje gravitacional y mayor el efecto sobre la estrella visible. 93
  56. 56. • Gravitational effect of Black Hole on Companion star is measured through the orbital velocity of the Companion. • What’s the connection ? Orbital Velocity of Optical Companion Star in Cygnus X-1 3 3 3 m bh sin i vc P 2 (m c m bh ) 2 G 94
  57. 57. Stars near the center of a galaxy have varied speeds and directions of their orbital motions - that is termed their “velocity dispersion.” The cause of all this chaotic behavior appears to be a super-massive black hole that lurks at the galactic center! 95
  58. 58. • Hubble Space Telescope can precisely measure the speed of gas and stars around a black hole. • It discovered a correlation between a black hole's mass and the average speed of the stars in the galaxy's central bulge. • The faster the stars are moving, the larger the black hole. 96
  59. 59.  Imagine the Universe – “An Introduction to Black Holes”  Amazing Space – “ The Truth About Black Holes”  Hubble Space Telescope Institute  Adler Planertarium - “Astronomy Connections - Gravity and Black Holes”  Gravity Probe B 97
  60. 60.  Constellation X-ray Observatory  Imagine the Universe: “You be the Astrophysicist” - Determine the Mass of Cygnus X-1  Imagine the Universe – “Taking a Black Hole for a Spin”  Starchild – “Black Holes” tml  “Virtual Trips to Black Holes and Neutron Stars” 98
  61. 61.  Universe! – “Voyage to a Black Hole”  Falling Into a Black Hole  Massive Black Hole Information Center  Everything you need to know about Black Holes  Black Holes in a Different Light (this presentation) 99
  62. 62. http://amazing- Un cuestionario excelente de preguntas con sus respuestas 100