SlideShare a Scribd company logo

[223]기계독해 QA: 검색인가, NLP인가?

NAVER D2
NAVER D2
NAVER D2NAVER D2

[223]기계독해 QA: 검색인가, NLP인가?

[223]기계독해 QA: 검색인가, NLP인가?

1 of 122
Download to read offline
기계독해 QA:
검색인가, NLP인가?
이름 : 서민준
소속 : NAVER / Clova ML
QA = Question Answering
너 큰일난듯. 탑항공 폐업했대!
*실제로 일어난 일
허럴? 진짜?
왜 폐업했대?
몰라
내 표 환불가능할까?
도와줘 네이버!
도움이 안되는 친굴세.
전화도 안받어…
CONTENTS
1. 검색으로 “찾는” QA – 10분
2. NLP로 “읽는” QA – 10분
3. 검색과 NLP의 접점 – 20분
4. Q&A – 5분
1. 검색으로 “찾는” QA
탑항공 폐업
Ad

Recommended

Efficient and effective passage search via contextualized late interaction ov...
Efficient and effective passage search via contextualized late interaction ov...Efficient and effective passage search via contextualized late interaction ov...
Efficient and effective passage search via contextualized late interaction ov...taeseon ryu
 
RoFormer: Enhanced Transformer with Rotary Position Embedding
RoFormer: Enhanced Transformer with Rotary Position EmbeddingRoFormer: Enhanced Transformer with Rotary Position Embedding
RoFormer: Enhanced Transformer with Rotary Position Embeddingtaeseon ryu
 
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)
Kaggle – Airbnb New User Bookingsのアプローチについて(Kaggle Tokyo Meetup #1 20160305)Keiku322
 
기계독해를 위한 BERT 언어처리 모델 활용
기계독해를 위한 BERT 언어처리 모델 활용기계독해를 위한 BERT 언어처리 모델 활용
기계독해를 위한 BERT 언어처리 모델 활용Kenneth Jung
 
딥러닝 기반의 자연어처리 최근 연구 동향
딥러닝 기반의 자연어처리 최근 연구 동향딥러닝 기반의 자연어처리 최근 연구 동향
딥러닝 기반의 자연어처리 최근 연구 동향LGCNSairesearch
 
Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)
Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)
Self-Critical Sequence Training for Image Captioning (関東CV勉強会 CVPR 2017 読み会)Yoshitaka Ushiku
 
機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話Ryota Kamoshida
 
PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習PubMedBERT: 生物医学NLPのための事前学習
PubMedBERT: 生物医学NLPのための事前学習Naoto Usuyama
 

More Related Content

What's hot

[기초개념] Recurrent Neural Network (RNN) 소개
[기초개념] Recurrent Neural Network (RNN) 소개[기초개념] Recurrent Neural Network (RNN) 소개
[기초개념] Recurrent Neural Network (RNN) 소개Donghyeon Kim
 
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!
遺伝的アルゴリズム(Genetic Algorithm)を始めよう!遺伝的アルゴリズム(Genetic Algorithm)を始めよう!
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!Kazuhide Okamura
 
SSDC2022 - AI for Everyone 딥러닝 논문읽고 성장하는 모임이야기
SSDC2022 - AI for Everyone 딥러닝 논문읽고 성장하는 모임이야기SSDC2022 - AI for Everyone 딥러닝 논문읽고 성장하는 모임이야기
SSDC2022 - AI for Everyone 딥러닝 논문읽고 성장하는 모임이야기taeseon ryu
 
Domain Transfer and Adaptation Survey
Domain Transfer and Adaptation SurveyDomain Transfer and Adaptation Survey
Domain Transfer and Adaptation SurveySangwoo Mo
 
グラフデータの機械学習における特徴表現の設計と学習
グラフデータの機械学習における特徴表現の設計と学習グラフデータの機械学習における特徴表現の設計と学習
グラフデータの機械学習における特徴表現の設計と学習Ichigaku Takigawa
 
全体セミナー20170629
全体セミナー20170629全体セミナー20170629
全体セミナー20170629Jiro Nishitoba
 
[DLHacks]Comet ML -機械学習のためのGitHub-
[DLHacks]Comet ML -機械学習のためのGitHub-[DLHacks]Comet ML -機械学習のためのGitHub-
[DLHacks]Comet ML -機械学習のためのGitHub-Deep Learning JP
 
딥러닝의 기본
딥러닝의 기본딥러닝의 기본
딥러닝의 기본deepseaswjh
 
GAN-based statistical speech synthesis (in Japanese)
GAN-based statistical speech synthesis (in Japanese)GAN-based statistical speech synthesis (in Japanese)
GAN-based statistical speech synthesis (in Japanese)Yuki Saito
 
Statistical Semantic入門 ~分布仮説からword2vecまで~
Statistical Semantic入門 ~分布仮説からword2vecまで~Statistical Semantic入門 ~分布仮説からword2vecまで~
Statistical Semantic入門 ~分布仮説からword2vecまで~Yuya Unno
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual FeaturesARISE analytics
 
言語モデル入門 (第二版)
言語モデル入門 (第二版)言語モデル入門 (第二版)
言語モデル入門 (第二版)Yoshinari Fujinuma
 
自然言語処理 BERTに関する論文紹介とまとめ
自然言語処理 BERTに関する論文紹介とまとめ自然言語処理 BERTに関する論文紹介とまとめ
自然言語処理 BERTに関する論文紹介とまとめKeisukeNakazono
 
Deep Learningによる超解像の進歩
Deep Learningによる超解像の進歩Deep Learningによる超解像の進歩
Deep Learningによる超解像の進歩Hiroto Honda
 
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language ModelsDeep Learning JP
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Keigo Nishida
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Modelscvpaper. challenge
 
DeBERTA : Decoding-Enhanced BERT with Disentangled Attention
DeBERTA : Decoding-Enhanced BERT with Disentangled AttentionDeBERTA : Decoding-Enhanced BERT with Disentangled Attention
DeBERTA : Decoding-Enhanced BERT with Disentangled Attentiontaeseon ryu
 

What's hot (20)

[기초개념] Recurrent Neural Network (RNN) 소개
[기초개념] Recurrent Neural Network (RNN) 소개[기초개념] Recurrent Neural Network (RNN) 소개
[기초개념] Recurrent Neural Network (RNN) 소개
 
NLP2017 NMT Tutorial
NLP2017 NMT TutorialNLP2017 NMT Tutorial
NLP2017 NMT Tutorial
 
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!
遺伝的アルゴリズム(Genetic Algorithm)を始めよう!遺伝的アルゴリズム(Genetic Algorithm)を始めよう!
遺伝的アルゴリズム (Genetic Algorithm)を始めよう!
 
SSDC2022 - AI for Everyone 딥러닝 논문읽고 성장하는 모임이야기
SSDC2022 - AI for Everyone 딥러닝 논문읽고 성장하는 모임이야기SSDC2022 - AI for Everyone 딥러닝 논문읽고 성장하는 모임이야기
SSDC2022 - AI for Everyone 딥러닝 논문읽고 성장하는 모임이야기
 
Domain Transfer and Adaptation Survey
Domain Transfer and Adaptation SurveyDomain Transfer and Adaptation Survey
Domain Transfer and Adaptation Survey
 
グラフデータの機械学習における特徴表現の設計と学習
グラフデータの機械学習における特徴表現の設計と学習グラフデータの機械学習における特徴表現の設計と学習
グラフデータの機械学習における特徴表現の設計と学習
 
全体セミナー20170629
全体セミナー20170629全体セミナー20170629
全体セミナー20170629
 
[DLHacks]Comet ML -機械学習のためのGitHub-
[DLHacks]Comet ML -機械学習のためのGitHub-[DLHacks]Comet ML -機械学習のためのGitHub-
[DLHacks]Comet ML -機械学習のためのGitHub-
 
딥러닝의 기본
딥러닝의 기본딥러닝의 기본
딥러닝의 기본
 
GAN-based statistical speech synthesis (in Japanese)
GAN-based statistical speech synthesis (in Japanese)GAN-based statistical speech synthesis (in Japanese)
GAN-based statistical speech synthesis (in Japanese)
 
Statistical Semantic入門 ~分布仮説からword2vecまで~
Statistical Semantic入門 ~分布仮説からword2vecまで~Statistical Semantic入門 ~分布仮説からword2vecまで~
Statistical Semantic入門 ~分布仮説からword2vecまで~
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
 
言語モデル入門 (第二版)
言語モデル入門 (第二版)言語モデル入門 (第二版)
言語モデル入門 (第二版)
 
自然言語処理 BERTに関する論文紹介とまとめ
自然言語処理 BERTに関する論文紹介とまとめ自然言語処理 BERTに関する論文紹介とまとめ
自然言語処理 BERTに関する論文紹介とまとめ
 
Deep Learningによる超解像の進歩
Deep Learningによる超解像の進歩Deep Learningによる超解像の進歩
Deep Learningによる超解像の進歩
 
Blenderbot
BlenderbotBlenderbot
Blenderbot
 
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
 
Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西Layer Normalization@NIPS+読み会・関西
Layer Normalization@NIPS+読み会・関西
 
【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models【メタサーベイ】基盤モデル / Foundation Models
【メタサーベイ】基盤モデル / Foundation Models
 
DeBERTA : Decoding-Enhanced BERT with Disentangled Attention
DeBERTA : Decoding-Enhanced BERT with Disentangled AttentionDeBERTA : Decoding-Enhanced BERT with Disentangled Attention
DeBERTA : Decoding-Enhanced BERT with Disentangled Attention
 

Similar to [223]기계독해 QA: 검색인가, NLP인가?

Sue Bell AAA 2016
Sue Bell AAA 2016Sue Bell AAA 2016
Sue Bell AAA 2016Ray Poynter
 
Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Mach...
Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Mach...Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Mach...
Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Mach...Antonio Toral
 
Natural Language Processing.pptx
Natural Language Processing.pptxNatural Language Processing.pptx
Natural Language Processing.pptxPriyadharshiniG41
 
Natural Language Processing.pptx
Natural Language Processing.pptxNatural Language Processing.pptx
Natural Language Processing.pptxPriyadharshiniG41
 
What an old bird says 2010
What an old bird says 2010What an old bird says 2010
What an old bird says 2010Zhibo Xiao
 
Introduction to NLP.pptx
Introduction to NLP.pptxIntroduction to NLP.pptx
Introduction to NLP.pptxbuivantan_uneti
 
What’s wrong with research papers - and (how) can we fix it?
What’s wrong with research papers -  and (how) can we fix it?What’s wrong with research papers -  and (how) can we fix it?
What’s wrong with research papers - and (how) can we fix it?Anita de Waard
 
Tips on Transcribing Qualitative Interviews
Tips on Transcribing Qualitative InterviewsTips on Transcribing Qualitative Interviews
Tips on Transcribing Qualitative InterviewsCelia Emmelhainz
 
Putting the science in computer science
Putting the science in computer sciencePutting the science in computer science
Putting the science in computer scienceFelienne Hermans
 
Data Designed for Discovery
Data Designed for DiscoveryData Designed for Discovery
Data Designed for DiscoveryOCLC
 
Live Usability Lab: See One, Do One & Take One Home
Live Usability Lab: See One, Do One & Take One HomeLive Usability Lab: See One, Do One & Take One Home
Live Usability Lab: See One, Do One & Take One HomeStephanie Brown
 
Text as Data: processing the Hebrew Bible
Text as Data: processing the Hebrew BibleText as Data: processing the Hebrew Bible
Text as Data: processing the Hebrew BibleDirk Roorda
 
[KDD 2018 tutorial] End to-end goal-oriented question answering systems
[KDD 2018 tutorial] End to-end goal-oriented question answering systems[KDD 2018 tutorial] End to-end goal-oriented question answering systems
[KDD 2018 tutorial] End to-end goal-oriented question answering systemsQi He
 
Question Answering - Application and Challenges
Question Answering - Application and ChallengesQuestion Answering - Application and Challenges
Question Answering - Application and ChallengesJens Lehmann
 
2nd Spinoza workshop: Looking at the Long Tail - introductory slides
2nd Spinoza workshop: Looking at the Long Tail - introductory slides2nd Spinoza workshop: Looking at the Long Tail - introductory slides
2nd Spinoza workshop: Looking at the Long Tail - introductory slidesFilip Ilievski
 
Broad Twitter Corpus: A Diverse Named Entity Recognition Resource
Broad Twitter Corpus: A Diverse Named Entity Recognition ResourceBroad Twitter Corpus: A Diverse Named Entity Recognition Resource
Broad Twitter Corpus: A Diverse Named Entity Recognition ResourceLeon Derczynski
 
PyCon APAC 2016 Keynote
PyCon APAC 2016 KeynotePyCon APAC 2016 Keynote
PyCon APAC 2016 KeynoteWes McKinney
 

Similar to [223]기계독해 QA: 검색인가, NLP인가? (20)

Sue Bell AAA 2016
Sue Bell AAA 2016Sue Bell AAA 2016
Sue Bell AAA 2016
 
Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Mach...
Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Mach...Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Mach...
Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Mach...
 
Natural Language Processing.pptx
Natural Language Processing.pptxNatural Language Processing.pptx
Natural Language Processing.pptx
 
Natural Language Processing.pptx
Natural Language Processing.pptxNatural Language Processing.pptx
Natural Language Processing.pptx
 
What an old bird says 2010
What an old bird says 2010What an old bird says 2010
What an old bird says 2010
 
Introduction to NLP.pptx
Introduction to NLP.pptxIntroduction to NLP.pptx
Introduction to NLP.pptx
 
Machine Translation: The Neural Frontier
Machine Translation: The Neural FrontierMachine Translation: The Neural Frontier
Machine Translation: The Neural Frontier
 
Lo "AI-infused interfaces for reading AI preprints"
Lo "AI-infused interfaces for reading AI preprints"Lo "AI-infused interfaces for reading AI preprints"
Lo "AI-infused interfaces for reading AI preprints"
 
What’s wrong with research papers - and (how) can we fix it?
What’s wrong with research papers -  and (how) can we fix it?What’s wrong with research papers -  and (how) can we fix it?
What’s wrong with research papers - and (how) can we fix it?
 
Tips on Transcribing Qualitative Interviews
Tips on Transcribing Qualitative InterviewsTips on Transcribing Qualitative Interviews
Tips on Transcribing Qualitative Interviews
 
Putting the science in computer science
Putting the science in computer sciencePutting the science in computer science
Putting the science in computer science
 
Data Designed for Discovery
Data Designed for DiscoveryData Designed for Discovery
Data Designed for Discovery
 
Live Usability Lab: See One, Do One & Take One Home
Live Usability Lab: See One, Do One & Take One HomeLive Usability Lab: See One, Do One & Take One Home
Live Usability Lab: See One, Do One & Take One Home
 
Text as Data: processing the Hebrew Bible
Text as Data: processing the Hebrew BibleText as Data: processing the Hebrew Bible
Text as Data: processing the Hebrew Bible
 
1004-nlp.ppt
1004-nlp.ppt1004-nlp.ppt
1004-nlp.ppt
 
[KDD 2018 tutorial] End to-end goal-oriented question answering systems
[KDD 2018 tutorial] End to-end goal-oriented question answering systems[KDD 2018 tutorial] End to-end goal-oriented question answering systems
[KDD 2018 tutorial] End to-end goal-oriented question answering systems
 
Question Answering - Application and Challenges
Question Answering - Application and ChallengesQuestion Answering - Application and Challenges
Question Answering - Application and Challenges
 
2nd Spinoza workshop: Looking at the Long Tail - introductory slides
2nd Spinoza workshop: Looking at the Long Tail - introductory slides2nd Spinoza workshop: Looking at the Long Tail - introductory slides
2nd Spinoza workshop: Looking at the Long Tail - introductory slides
 
Broad Twitter Corpus: A Diverse Named Entity Recognition Resource
Broad Twitter Corpus: A Diverse Named Entity Recognition ResourceBroad Twitter Corpus: A Diverse Named Entity Recognition Resource
Broad Twitter Corpus: A Diverse Named Entity Recognition Resource
 
PyCon APAC 2016 Keynote
PyCon APAC 2016 KeynotePyCon APAC 2016 Keynote
PyCon APAC 2016 Keynote
 

More from NAVER D2

[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다NAVER D2
 
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...NAVER D2
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기NAVER D2
 
[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발NAVER D2
 
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈NAVER D2
 
[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&ANAVER D2
 
[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기NAVER D2
 
[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep LearningNAVER D2
 
[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applicationsNAVER D2
 
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingOld version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingNAVER D2
 
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지NAVER D2
 
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기NAVER D2
 
[224]네이버 검색과 개인화
[224]네이버 검색과 개인화[224]네이버 검색과 개인화
[224]네이버 검색과 개인화NAVER D2
 
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)NAVER D2
 
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기NAVER D2
 
[213] Fashion Visual Search
[213] Fashion Visual Search[213] Fashion Visual Search
[213] Fashion Visual SearchNAVER D2
 
[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화NAVER D2
 
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지NAVER D2
 
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터NAVER D2
 
[231] Clova 화자인식
[231] Clova 화자인식[231] Clova 화자인식
[231] Clova 화자인식NAVER D2
 

More from NAVER D2 (20)

[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다
 
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기
 
[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발
 
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
 
[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A
 
[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기
 
[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning
 
[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications
 
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingOld version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
 
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
 
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
 
[224]네이버 검색과 개인화
[224]네이버 검색과 개인화[224]네이버 검색과 개인화
[224]네이버 검색과 개인화
 
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
 
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
 
[213] Fashion Visual Search
[213] Fashion Visual Search[213] Fashion Visual Search
[213] Fashion Visual Search
 
[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화
 
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
 
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
 
[231] Clova 화자인식
[231] Clova 화자인식[231] Clova 화자인식
[231] Clova 화자인식
 

Recently uploaded

Microsoft Azure News - Feb 2024
Microsoft Azure News - Feb 2024Microsoft Azure News - Feb 2024
Microsoft Azure News - Feb 2024Daniel Toomey
 
DNA LIGASE BIOTECHNOLOGY BIOLOGY STUDY OF LIFE
DNA LIGASE BIOTECHNOLOGY BIOLOGY STUDY OF LIFEDNA LIGASE BIOTECHNOLOGY BIOLOGY STUDY OF LIFE
DNA LIGASE BIOTECHNOLOGY BIOLOGY STUDY OF LIFEandreiandasan
 
Azure Migration Guide for IT Professionals
Azure Migration Guide for IT ProfessionalsAzure Migration Guide for IT Professionals
Azure Migration Guide for IT ProfessionalsChristine Shepherd
 
Semiconductor Review Magazine Feature.pdf
Semiconductor Review Magazine Feature.pdfSemiconductor Review Magazine Feature.pdf
Semiconductor Review Magazine Feature.pdfkeyaramicrochipusa
 
zigbee motion sensor user manual NAS-PD07B2.pdf
zigbee motion sensor user manual NAS-PD07B2.pdfzigbee motion sensor user manual NAS-PD07B2.pdf
zigbee motion sensor user manual NAS-PD07B2.pdfDomotica daVinci
 
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdfQuinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdfDomotica daVinci
 
Microsoft Azure - GAA and Irish Tech Society Hackathon
Microsoft Azure - GAA and Irish Tech Society HackathonMicrosoft Azure - GAA and Irish Tech Society Hackathon
Microsoft Azure - GAA and Irish Tech Society HackathonJuarez Junior
 
Bringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxBringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxMaarten Balliauw
 
M.Aathiraju Self Intro.docx-AD21001_____
M.Aathiraju Self Intro.docx-AD21001_____M.Aathiraju Self Intro.docx-AD21001_____
M.Aathiraju Self Intro.docx-AD21001_____Aathiraju
 
Enhancing SaaS Performance: A Hands-on Workshop for Partners
Enhancing SaaS Performance: A Hands-on Workshop for PartnersEnhancing SaaS Performance: A Hands-on Workshop for Partners
Enhancing SaaS Performance: A Hands-on Workshop for PartnersThousandEyes
 
Z-Wave Fan coil Thermostat Heltun_HE-HT01_User_Manual.pdf
Z-Wave Fan coil Thermostat Heltun_HE-HT01_User_Manual.pdfZ-Wave Fan coil Thermostat Heltun_HE-HT01_User_Manual.pdf
Z-Wave Fan coil Thermostat Heltun_HE-HT01_User_Manual.pdfDomotica daVinci
 
GDSC MMCOE - ML Campaign
GDSC MMCOE - ML CampaignGDSC MMCOE - ML Campaign
GDSC MMCOE - ML CampaignLavesh Akhadkar
 
A Comprehensive Theoretical Overview of Self-Driving Car Technology
A Comprehensive Theoretical Overview of Self-Driving Car TechnologyA Comprehensive Theoretical Overview of Self-Driving Car Technology
A Comprehensive Theoretical Overview of Self-Driving Car TechnologyKumar Bipin
 
Artificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfArtificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfIsidro Navarro
 
Manual Eurotronic Thermostatic Valve Comry Z-Wave
Manual Eurotronic Thermostatic Valve Comry Z-WaveManual Eurotronic Thermostatic Valve Comry Z-Wave
Manual Eurotronic Thermostatic Valve Comry Z-WaveDomotica daVinci
 
Curtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfCurtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfDomotica daVinci
 
2) Presentation_Overview_ISO_16140-3_Method_verification_20210322.pptx
2) Presentation_Overview_ISO_16140-3_Method_verification_20210322.pptx2) Presentation_Overview_ISO_16140-3_Method_verification_20210322.pptx
2) Presentation_Overview_ISO_16140-3_Method_verification_20210322.pptxssuser796efb
 

Recently uploaded (20)

Microsoft Azure News - Feb 2024
Microsoft Azure News - Feb 2024Microsoft Azure News - Feb 2024
Microsoft Azure News - Feb 2024
 
Russia Ukraine war Cyberspace operations (2022-2024)
Russia Ukraine war Cyberspace operations (2022-2024)Russia Ukraine war Cyberspace operations (2022-2024)
Russia Ukraine war Cyberspace operations (2022-2024)
 
DNA LIGASE BIOTECHNOLOGY BIOLOGY STUDY OF LIFE
DNA LIGASE BIOTECHNOLOGY BIOLOGY STUDY OF LIFEDNA LIGASE BIOTECHNOLOGY BIOLOGY STUDY OF LIFE
DNA LIGASE BIOTECHNOLOGY BIOLOGY STUDY OF LIFE
 
Azure Migration Guide for IT Professionals
Azure Migration Guide for IT ProfessionalsAzure Migration Guide for IT Professionals
Azure Migration Guide for IT Professionals
 
Semiconductor Review Magazine Feature.pdf
Semiconductor Review Magazine Feature.pdfSemiconductor Review Magazine Feature.pdf
Semiconductor Review Magazine Feature.pdf
 
GTA 6.pdf
GTA 6.pdfGTA 6.pdf
GTA 6.pdf
 
zigbee motion sensor user manual NAS-PD07B2.pdf
zigbee motion sensor user manual NAS-PD07B2.pdfzigbee motion sensor user manual NAS-PD07B2.pdf
zigbee motion sensor user manual NAS-PD07B2.pdf
 
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdfQuinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
Quinto Z-Wave Heltun_HE-RS01_User_Manual_B9AH.pdf
 
COE AI Lab Universities
COE AI Lab UniversitiesCOE AI Lab Universities
COE AI Lab Universities
 
Microsoft Azure - GAA and Irish Tech Society Hackathon
Microsoft Azure - GAA and Irish Tech Society HackathonMicrosoft Azure - GAA and Irish Tech Society Hackathon
Microsoft Azure - GAA and Irish Tech Society Hackathon
 
Bringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptxBringing nullability into existing code - dammit is not the answer.pptx
Bringing nullability into existing code - dammit is not the answer.pptx
 
M.Aathiraju Self Intro.docx-AD21001_____
M.Aathiraju Self Intro.docx-AD21001_____M.Aathiraju Self Intro.docx-AD21001_____
M.Aathiraju Self Intro.docx-AD21001_____
 
Enhancing SaaS Performance: A Hands-on Workshop for Partners
Enhancing SaaS Performance: A Hands-on Workshop for PartnersEnhancing SaaS Performance: A Hands-on Workshop for Partners
Enhancing SaaS Performance: A Hands-on Workshop for Partners
 
Z-Wave Fan coil Thermostat Heltun_HE-HT01_User_Manual.pdf
Z-Wave Fan coil Thermostat Heltun_HE-HT01_User_Manual.pdfZ-Wave Fan coil Thermostat Heltun_HE-HT01_User_Manual.pdf
Z-Wave Fan coil Thermostat Heltun_HE-HT01_User_Manual.pdf
 
GDSC MMCOE - ML Campaign
GDSC MMCOE - ML CampaignGDSC MMCOE - ML Campaign
GDSC MMCOE - ML Campaign
 
A Comprehensive Theoretical Overview of Self-Driving Car Technology
A Comprehensive Theoretical Overview of Self-Driving Car TechnologyA Comprehensive Theoretical Overview of Self-Driving Car Technology
A Comprehensive Theoretical Overview of Self-Driving Car Technology
 
Artificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdfArtificial-Intelligence-in-Marketing-Data.pdf
Artificial-Intelligence-in-Marketing-Data.pdf
 
Manual Eurotronic Thermostatic Valve Comry Z-Wave
Manual Eurotronic Thermostatic Valve Comry Z-WaveManual Eurotronic Thermostatic Valve Comry Z-Wave
Manual Eurotronic Thermostatic Valve Comry Z-Wave
 
Curtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdfCurtain Module Manual Zigbee Neo CS01-1C.pdf
Curtain Module Manual Zigbee Neo CS01-1C.pdf
 
2) Presentation_Overview_ISO_16140-3_Method_verification_20210322.pptx
2) Presentation_Overview_ISO_16140-3_Method_verification_20210322.pptx2) Presentation_Overview_ISO_16140-3_Method_verification_20210322.pptx
2) Presentation_Overview_ISO_16140-3_Method_verification_20210322.pptx
 

[223]기계독해 QA: 검색인가, NLP인가?

  • 1. 기계독해 QA: 검색인가, NLP인가? 이름 : 서민준 소속 : NAVER / Clova ML
  • 2. QA = Question Answering
  • 3. 너 큰일난듯. 탑항공 폐업했대! *실제로 일어난 일 허럴? 진짜? 왜 폐업했대? 몰라 내 표 환불가능할까? 도와줘 네이버! 도움이 안되는 친굴세. 전화도 안받어…
  • 4. CONTENTS 1. 검색으로 “찾는” QA – 10분 2. NLP로 “읽는” QA – 10분 3. 검색과 NLP의 접점 – 20분 4. Q&A – 5분
  • 7. 탑항공 폐업 • 내용 및 제목의 관련성 • 비슷한 검색을 한 유저가 읽은 문서 • 웹사이트의 신뢰도 • 문서의 인기도 • 검색자의 정보 • … 종합적으로 고려해요!
  • 8. 탑항공 폐업 • 내용 및 제목의 관련성 • 비슷한 검색을 한 유저가 읽은 문서 • 웹사이트의 신뢰도 • 문서의 인기도 • 검색자의 정보 • …
  • 9. Word Matching 검색한 단어가 존재하는 문서를 가져옴 • Ctrl-F • 제목에만 적용할 경우 꽤 효과적임
  • 11. TF-IDF Term Frequency – Inverse Document Frequency • 중요 키워드 (흔하지 않은 단어)에 더 높은 가중치를 줌. • 질문이 길어지고 문서 내용 검색을 한다면 필수
  • 12. Okapi BM25 “Best Matching” (Robertson et al., 1970s) • TF-IDF 의 “업그레이드 버젼” • TF 부분을 변경 왜 더했다 뺐다 그러는 거야
  • 13. LSA Latent Semantic Analysis (Deerwester et al., 1988) • Bag of words (sparse) à dense vector via SVD • 각 단어에 추상적인 “태그”를 달아줌 • 추상적인 ”태그”를 통해 다른 단어끼리도 비교할 수 있게 됨. • “폐업” ~ “망하다” ~ “몰락”
  • 14. 내가 궁금한 걸 꼭 집어서 알려줄 순 없어? 문서는 찾아드릴 수 있는데요…
  • 16. 검색의 한계 문장을 “읽는” 것이 아니다 • 단어 (lexical) 수준의 정보습득은 가능하나… • 문법적 (syntactic) 또는 의미적 (semantic) 맥락을 파악 못함. • 문서나 문단 수준 이상으로 “꼭 집어서” 답을 가져오기 힘듬.
  • 19. 제가 읽어봤는데요, 대내외적인 경영환경 악화로 폐업했대요. 왜 폐업했대? 똑똑하구만!
  • 20. 기계학습의 첫 단계: 인풋 ,아웃풋 정의하기
  • 21. 탑항공이 왜 폐업했대? 대내외적인 경영환경 악화 Inputs Output 일단 인풋과 아웃풋을 정의해보잣
  • 24. Generative Model 의 문제점 서비스 퀄리티가 안나온다. • 엉뚱한 답을 내는 경우가 너무 많음. • 데이터 퀄리티 컨트롤이 어려움. (예: MS MARCO1) 1 Nguyen et al. MS MARCO: A human generated machine reading comprehension dataset. 2016. 평가 (Evaluation) 도 어렵다. • BLEU 가 있기는 하지만…
  • 27. 7 Milestones in Extractive QA 1. Sentence-level QA (May 2015) 2. Phrase-level QA (May 2016) 3. Cross-attention (Nov 2016) 4. Self-attention (Mar 2017) 5. Transfer learning (Nov 2017) 6. Super-human level (Jan 2018) 7. What’s next? (Nov 2018) Task definition Models
  • 28. 7 Milestones in Extractive QA 1. Sentence-level QA (May 2015) 2. Phrase-level QA (May 2016) 3. Cross-attention (Nov 2016) 4. Self-attention (Mar 2017) 5. Transfer learning (Nov 2017) 6. Super-human level (Jan 2018) 7. What’s next? (Nov 2018)
  • 29. 1. Sentence-level QA Second Epistle to the Corinthians The Second Epistle to the Corinthians, often referred to as Second Corinthians (and written as 2 Corinthians), is the eighth book of the New Testament of the Bible. Paul the Apostle and “Timothy our brother” wrote this epistle to “the church of God which is at Corinth, with all the saints which are in all Achaia”. Who wrote second Corinthians? Yang et al. WikiQA: A Challenge Dataset for Open-domain Question Answering. EMNLP 2015.
  • 30. 1. Sentence-level QA Second Epistle to the Corinthians The Second Epistle to the Corinthians, often referred to as Second Corinthians (and written as 2 Corinthians), is the eighth book of the New Testament of the Bible. Paul the Apostle and “Timothy our brother” wrote this epistle to “the church of God which is at Corinth, with all the saints which are in all Achaia”. Who wrote second Corinthians? Yang et al. WikiQA: A Challenge Dataset for Open-domain Question Answering. EMNLP 2015.
  • 32. 답만 딱 보여줄 수 없을까?
  • 33. 2. Phrase-level QA Second Epistle to the Corinthians The Second Epistle to the Corinthians, often referred to as Second Corinthians (and written as 2 Corinthians), is the eighth book of the New Testament of the Bible. Paul the Apostle and “Timothy our brother” wrote this epistle to “the church of God which is at Corinth, with all the saints which are in all Achaia”. Who wrote second Corinthians? Rajpurkar et al. SQuAD: 100,000+ Questions for Machine Comprehension of Text. EMNLP 2016
  • 34. 2. Phrase-level QA Second Epistle to the Corinthians The Second Epistle to the Corinthians, often referred to as Second Corinthians (and written as 2 Corinthians), is the eighth book of the New Testament of the Bible. Paul the Apostle and “Timothy our brother” wrote this epistle to “the church of God which is at Corinth, with all the saints which are in all Achaia”. Who wrote second Corinthians? Rajpurkar et al. SQuAD: 100,000+ Questions for Machine Comprehension of Text. EMNLP 2016
  • 37. 7 Milestones in Extractive QA 1. Sentence-level QA (May 2015) 2. Phrase-level QA (May 2016) 3. Cross-attention (Nov 2016) 4. Self-attention (Mar 2017) 5. Transfer learning (Nov 2017) 6. Super-human level (Jan 2018) 7. What’s next? (Nov 2018)
  • 38. 2. Cross-attention Second Epistle to the Corinthians The Second Epistle to the Corinthians, often referred to as Second Corinthians (and written as 2 Corinthians), is the eighth book of the New Testament of the Bible. Paul the Apostle and “Timothy our brother” wrote this epistle to “the church of God which is at Corinth, with all the saints which are in all Achaia”. Who wrote second Corinthians?
  • 39. 문서를 읽으면서 질문을 참고 질문을 읽으면서 문서를 참고
  • 40. 2. Cross-attention Second Epistle to the Corinthians The Second Epistle to the Corinthians, often referred to as Second Corinthians (and written as 2 Corinthians), is the eighth book of the New Testament of the Bible. Paul the Apostle and “Timothy our brother” wrote this epistle to “the church of God which is at Corinth, with all the saints which are in all Achaia”. Who wrote second Corinthians? Seo et al. Bi-directional attention flow for machine comprehension. ICLR 2017.
  • 42. 2. Self-attention Second Epistle to the Corinthians The Second Epistle to the Corinthians, often referred to as Second Corinthians (and written as 2 Corinthians), is the eighth book of the New Testament of the Bible. Paul the Apostle and “Timothy our brother” wrote this epistle to “the church of God which is at Corinth, with all the saints which are in all Achaia”. Who wrote second Corinthians? Clark & Gardner. Simple and effective multi-paragraph reading comprehension. 2017
  • 43. 문서를 읽으면서 문서의 다른 부분을 참고
  • 44. 2. Self-attention Second Epistle to the Corinthians The Second Epistle to the Corinthians, often referred to as Second Corinthians (and written as 2 Corinthians), is the eighth book of the New Testament of the Bible. Paul the Apostle and “Timothy our brother” wrote this epistle to “the church of God which is at Corinth, with all the saints which are in all Achaia”. Who wrote second Corinthians? Clark & Gardner. Simple and effective multi-paragraph reading comprehension. 2017
  • 47. 4. Transfer learning 3 billion words, unlabeled 2 million words, labeled Language model Peters et al. Deep contextualized word representations. NAACL 2018.
  • 51. 5. Super-human level • Ensemble • NLP tools (POS, parser, etc.) • Data Augmentation • A lot of layers Hi, Nice to meet you! MT 안녕, 반가워! MT Hello, great to see you! • 이…. • 것… • 저… • 것… Yu et al. QANet: Combining local convolution with global self- attention for reading comprehension. ICLR 2018.
  • 55. 7 Milestones in Extractive QA 1. Sentence-level QA (May 2015) 2. Phrase-level QA (May 2016) 3. Cross-attention (Nov 2016) 4. Self-attention (Mar 2017) 5. Transfer learning (Nov 2017) 6. Super-human level (Jan 2018) 7. What’s next? (Nov 2018)
  • 56. QuAC (Conversational) Choi et al., EMNLP 2018 HotpotQA (Reasoning) Yang et al., EMNLP 2018
  • 57. 정확한 건 좋은데, 얼마나 걸려? 음… GPU를 사용하면 한 문서 읽는데 0.1초정도?
  • 59. 하지만 Linear-time 의 굴레 에서 벗어날 수가 없다. Microsoft Research Asia. R-Net: machine reading comprehension with self matching networks. 2017.
  • 61. 정확한 건 좋은데, 얼마나 걸려? 음… GPU를 사용하면 한 문서 읽는데 0.1초정도? 그러니까… 6일정도요.
  • 63. 질문 하나에 1주일? !#$@*%(@*@ 아 그러면 검색을 이용해서 문서를 찾고, 그거만 읽을게요!
  • 65. 1961 Chen et al. Reading Wikipedia to Answer Open-Domain Questions. ACL 2017.
  • 66. 잠깐, 그런데 검색엔진이 잘못된 답을 내면 어떡하지? “탑항공이 폐업한게 진짜임?”
  • 72. Solution 2: 찾기와 읽기를 동시에?
  • 73. 검색은 어떻게 문서를 빨리 찾을까?
  • 77. [0.3, 0.5, …] [0.7, 0.1, …] [0.6, 0.2, …] . . . [0.4, 0.4, …] 한국전쟁은 언제 터졌어? […] […] […] . . . [0.5, 0.1, …] [0.3, 0.4, …] [0.4, 0.5, …] [0.8, 0.1, …] [0.4, 0.4, …] [0.4, 0.3, …] Locality-Sensitive Hashing 비슷한 아이템의 충돌을 최대화 MIPS
  • 78. Locality-Sensitive Hashing (LSH) • Symmetric: distance functions (Nearest Neighbor Search) • L2 • L1 • Cosine • Asymmetric: inner product (MIPS) • Dot product
  • 79. !(#$% log $ ) !(#$) *= 근사 factor (<1) Shrivastava and Li. Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips). NIPS 2014.
  • 81. 문서 à 구문 (Phrase)?
  • 82. Super Bowl 50 !" American football game !# National Football League !$ Denver Broncos !% … Which NFL team represented the AFC at Super Bowl 50? & MIPS
  • 83. 수식으로 보는 기존과 비교 • 문서 d 와 쿼리 q 가 주어졌을 때: !" = argmax ) *+("|.; 0) *+("|.; 0) ∝ exp(5+ ", ., 0 ) *+("|.; 0) ∝ exp(7+(.) 8 9+(", 0)) where 기존: 매 새로운 질문마다 F 를 재계산 해야 함. 제안: H 는 미리 계산 될 수 있고 index (hash) 될 수도 있음 Decomposition
  • 86. 5분간 듣는 PIQA 1년 삽질기 1. Baseline 은 그리 어렵지 않았다 2. Duality의 활용 3. Multimodality… 4. Sparsity: 단번에 9% 업! 5. Scalability: 가능은 하지만 만만치 않은… 작년 6월부터
  • 87. Baseline 1: LSTM … water transforms into steam within a boiler … What does water turn into when heated? Document Question Bi-LSTM Bi-LSTM !" !# !$ !% !& !' !( Weighted Sum ) Nearest Neighbor
  • 88. Baseline 2: Self-Attention … water transforms into steam within a boiler … What does water turn into when heated? Document Question !" !# !$ !% !& !' !( “steam” “water” + “transform” + “boiler” “What” “water” + “turn” + “heated” type clue type clue )% * dot
  • 89. SQuAD F1 (%) EM (%) First Baseline 40.0 51.0 SOTA 91.2 85.4 PI-SQuAD F1 EM LSTM 57.2 46.8 LSTM+SA 59.8 49.0 Seo et al. Phrase-indexed question answering: a new challenge toward scalable document comprehension. EMNLP 2018.
  • 91. Barack Obama was 44th president from 2009 to 2017. 일대다 관계 !, # $ $(!, #) Q1: Who was president in 2009? Q2: Who was the 44th president?
  • 93. Duality: Question Reconstruction What does water turn into when heated? Question Bi-LSTM !" !# !$ !% !& !' !( Weighted Sum ) Nearest Neighbor Generation seq2seq decoder (without attention)
  • 94. SQuAD F1 (%) EM (%) First Baseline 40.0 51.0 SOTA 91.2 85.4 PI-SQuAD F1 EM LSTM 57.2 46.8 LSTM+SA 59.8 49.0
  • 95. SQuAD F1 (%) EM (%) First Baseline 40.0 51.0 SOTA 91.2 85.4 PI-SQuAD F1 EM LSTM 57.2 46.8 LSTM+SA 59.8 49.0 LSTM+SA+Dual 63.2 52.0
  • 97. !"($|&; () Barack Obama was 44th president from 2009 to 2017. Who was president in 2009? Who was the 44th president? *"($|&; () Multimodality
  • 99. Barack Obama was 44th president from 2009 to 2017. Q1: Who was president in 2009? Q2: Who was the 44th president? Latent Variable 을 사용하면 된다? !, # $ $(!, &1, #) $(!, z2, #)
  • 100. 그래서 (1년동안!) 시도해 본 것들 1. Multiple identical models (ensemble) 2. Orthogonality regularization 3. Sequential decoding 4. Latent variable from Gaussian distribution 5. Latent variable from surrounding words
  • 101. 그래서 (1년동안!) 시도해 본 것들 1. Multiple identical models (ensemble) 2. Orthogonality regularization 3. Sequential decoding 4. Latent variable from Gaussian distribution 5. Latent variable from surrounding words 정확성을 좀 올려주지만, 30배 이상의 storage가 필요. 안됨…
  • 102. SQuAD F1 (%) EM (%) First Baseline 40.0 51.0 SOTA 91.2 85.4 PI-SQuAD F1 EM LSTM 57.2 46.8 LSTM+SA 59.8 49.0 LSTM+SA+Dual 63.2 52.0
  • 103. SQuAD F1 (%) EM (%) First Baseline 40.0 51.0 SOTA 91.2 85.4 PI-SQuAD F1 EM LSTM 57.2 46.8 LSTM+SA 59.8 49.0 LSTM+SA+Dual 63.2 52.0 LSTM+SA+Multi-mode 66.5 55.1
  • 105. Sparse vector “steam” “water” + “transform” + “boiler” type clue !" steamboiler water transform Dense vector
  • 106. SQuAD F1 (%) EM (%) First Baseline 40.0 51.0 SOTA 91.2 85.4 PI-SQuAD F1 EM LSTM 57.2 46.8 LSTM+SA 59.8 49.0 LSTM+SA+Dual 63.2 52.0 LSTM+SA+Multi-mode 66.5 55.1
  • 107. SQuAD F1 (%) EM (%) First Baseline 40.0 51.0 SOTA 91.2 85.4 PI-SQuAD F1 EM LSTM 57.2 46.8 LSTM+SA 59.8 49.0 LSTM+SA+Dual 63.2 52.0 LSTM+SA+Multi-mode 66.5 55.1 LSTM+SA+Sparse+ELMo 69.3 58.7 To be on arXiv soon
  • 108. Scalability 고려사항 1 • SQuAD 는 문서 하나만 보는 것. à 벤치마크의 성격이 강함 • 실제 QA 시나리오가 아님. • End-to-end 가 Pipeline보다 더 나을거라는 보장? 추가 실험들이 필요!
  • 109. Scalability 고려사항 2 • 영어 위키피디아 단어수: 30억개 • 단어당 구문수: 평균 7개 • 구문당 vector dimension: 1024 • Float32: 4 Byte 약 90 TB (210억개의 구문)
  • 110. Scalability 고려사항 2 • 영어 위키피디아 단어수: 30억개 • 단어당 구문수: 평균 7개 • 구문당 vector dimension: 1024 • Float32: 4 Byte 최적화 가능 약 90 TB (210억개의 구문)
  • 112. Super Bowl 50 !" American football game !# National Football League !$ Denver Broncos !% … Which NFL team represented the AFC at Super Bowl 50? & MIPS
  • 113. According to the American Library Association, this makes … … tasked with drafting a European Charter of Human Rights, … 비슷한 타입의 고유명사 (lexical)
  • 114. The LM engines were successfully test- fired and restarted, … Steam turbines were extensively applied … 비슷한 semantic (의미) 및 syntactic (문법) 구조
  • 115. … primarily accomplished through the ductile stretching and thinning. … directly derived from the homogeneity or symmetry of space … 비슷한 syntactic (문법) 구조
  • 116. 그러니까 결론이 뭐야? 검색과 NLP의 아름다운 조화 아직 갈길은 멀지만, 같이 연구하고 고민해 보자구요! 나는 당장 잘되는게 필요하다구 둘 다 할게요 ㅜㅜ
  • 118. tl;dr: Representing the world knowledge in an elegant way
  • 120. Q & A
  • 122. We are Hiring! Domains • Speech Recognition • Speech Synthesis • Computer Vision • Natural Language • NSML / AutoML • Finance AI • App/Web Services Positions • Research Scientist • Research Engineer • SW Engineer • Android / iOS Engineer • Backend Engineer • Data Engineer • UI/UX Engineer • Internship Member • Global Residency clova-jobs@navercorp.com