Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Ohne LIRe keine Bildsuche

5,746 views

Published on

Vortrag über LIRe, eine open source Bibliothek für die Bildsuche, auf dem barcamp Klagenfurt am 05.02. 2011.

  • Dating direct: ❤❤❤ http://bit.ly/2Q98JRS ❤❤❤
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

Ohne LIRe keine Bildsuche

  1. 1. Ohne LIRekeine Bildsuche<br />Dr. Mathias Lux<br />Ass. Prof. / AAU<br />
  2. 2. CV<br />Techn. Mathematik(TU Graz)<br />Telematik(TU Graz)<br />Know-Center & KMI<br />AlpenAdriaUniversität Klagenfurt<br />Information Technology – ITEC<br />
  3. 3. Interessen<br />Multimedia Search & Retrieval<br />User Intentions<br />Computer Games<br />
  4. 4. ITEC, Klagenfurt University, Austria<br />Number of Digital Photos(global)<br />Estimate 2006<br />> 150 billion photos from cameras<br />> 100 billion photos from camera phones<br />Forecast 2010<br />> 500 billion photos<br />+ increased resolution<br />Source: IDC Study “Expanding Digital Universe” http://www.emc.com/about/destination/digital_universe/<br />
  5. 5. ITEC, Klagenfurt University, Austria<br />Digital Imaging Devices(Germany)<br />Still image cameras sold in Germany (thousands)<br />analogue<br />digital<br />Source: Cewe Factbook, http://www.cewecolor.de<br />
  6. 6.
  7. 7. Motivation<br />Or even on the web?<br />Flickr …<br />
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12. Semantic Gap<br />Inability of computers to interpret the scene<br />What is so special about Mona Lisa’s smile?<br />
  13. 13. Semantic & Sensory Gap<br />
  14. 14. Forschungsthemen<br />From [Datta et al. 2008]<br />
  15. 15. What is the problem with VIR?<br />The fundamental difficulty in doing what we want to do is related to the need to encode, perceive, convey, and measure similarity (e.g. between two images)<br />
  16. 16. Bildsuche<br />Vergleich von 2 MP Bildern<br />á 1.600 x 1.200 x 2 byte = 3,66 MB<br />Annahme: 7000 Bilder<br />~ 25 GB Daten<br />(CC) JasonRogers: http://flickr.com/photos/restlessglobetrotter/2149696743/<br />
  17. 17. Was tun?<br />
  18. 18. Was tun?<br />
  19. 19. LIReLucene Image Retrieval<br />Softwarebibliothek – GPL‘d<br />Verwendet Java<br />Erlaubt Bildsuche<br />Globale Features (> 10)<br />Lokale Features (SIFT, SURF, MSER)<br />Vereinfacht Indizierung & Suche<br />Lineare & approximative Suche<br />Zeigt Funktionalität via Demo<br />(CC) CayUsa: http://www.flickr.com/photos/cayusa/981372736/<br />
  20. 20. LIReLucene Image Retrieval<br />
  21. 21. Demo …<br />
  22. 22. Danke …<br />… für eure Zeit<br />Mathias Lux<br />mlux@itec.uni-klu.ac.at<br />http://www.semanticmetadata.net<br />

×