Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

011607.ppt - PowerPoint Presentation


Published on

  • Be the first to comment

  • Be the first to like this

011607.ppt - PowerPoint Presentation

  1. 1. BioE/ME C117 Structural Aspects of Biomaterials Course Overview Professor Lisa A. Pruitt, Ph.D. Associate Dean of Virtual Learning and Outreach Education Chancellor's Professor of Mechanical Engineering and Bioengineering Adjunct Professor of Orthopaedic Surgery, UCSF Structural Aspects of Biomaterials
  2. 2. Class Structure <ul><ul><li>CLASS: Tu/Th: 12:30-2pm 203 McLaughlin Hall </li></ul></ul><ul><ul><li> </li></ul></ul><ul><ul><li> </li></ul></ul><ul><li>SKILLS LAB: Thursdays, 3:30-5:30,203 McLaughlin. </li></ul><ul><li>Prof. Lisa Pruitt, OH: Tues 3:30- 5:00 or by appointment, 5134 EH, lpruitt@me </li></ul><ul><li>Senior Teaching Assistants: Jevan Furmanski OH: MW 5-6, 136 Hesse </li></ul><ul><li>Shikha Gupta OH;T, 136 Hesse </li></ul><ul><li>Teaching team: Cheng Li, Sara Atwood, Sheryl Kane </li></ul><ul><li>Course components: EXAMS (40%), DESIGN PROJECTS (30%), OUTREACH TEACHING PROJECTS (20%), ATTENDANCE (5%), QUIZZES (5%) </li></ul><ul><li>All HW is to be prepared professionally and submitted electronically. </li></ul><ul><li>No late HW--NO EXCEPTIONS. </li></ul><ul><li>This year our class is webcast. Please use microphones when asking questions. </li></ul><ul><li>Books:Dowling, 3rd edition and personal bound lab notebook </li></ul>
  3. 3. Course Goals <ul><li>Assessment of structure and mechanical functions of load bearing tissues and their replacements. </li></ul><ul><li>Examination of biocompatibility of biomaterials and host response to structural implants. </li></ul><ul><li>Quantitative treatment of biomechanical issues and constitutive relationships of tissues and their replacements. </li></ul><ul><li>Material selection for load bearing applications including orthopedics, dentistry, cardiology and reconstructive surgery. </li></ul><ul><li>Mechanical design for longevity of devices </li></ul><ul><li>Understanding of legal and ethical aspects of medical devices. </li></ul><ul><li>Development of professional skills: team work, technical writing, oral presentations, design, and teaching. </li></ul>
  4. 4. Lecture topics <ul><li>Overview of medical devices </li></ul><ul><li>FDA regulatory issues, biocompatibility and sterilization technology </li></ul><ul><li>Biomechanical properties: isotropy/anisotropy, stiffness, </li></ul><ul><li>bending, buckling, multiaxial loading, yielding, fatigue, fracture, wear, corrosion, and design issues. </li></ul><ul><li>Clinical Aspects: Orthopedics, Dental, Cardiovascular, and Soft Tissue Reconstruction. Case studies. </li></ul>
  5. 5. Lab topics <ul><li>Professional Development: Technical writing, oral presentations, literature searches </li></ul><ul><li>Design: Open-ended problem solving,team work, methodology, and assessment </li></ul><ul><li>Teaching: Blooms taxonomy, outreach activities, assessments </li></ul>
  6. 6. Biomaterials and implants <ul><li>Replace component of living being </li></ul><ul><li>Restore Function </li></ul><ul><li>Harmonious interaction with host </li></ul><ul><li>Biocompatibility </li></ul><ul><li>Long-term structural integrity </li></ul>
  7. 7. Structural biological materials <ul><li>Hard Tissues: Bone, enamel, dentin </li></ul><ul><li>Soft Tissues: Cartilage, tendon, ligament, vitreous humor,vasculature,skin, organs </li></ul><ul><li>Fluids: Blood, synovial fluid </li></ul><ul><li>Problems when used as an implant material: Infection, resorption, inflammation, rejection </li></ul>
  8. 8. Synthetic Biomaterial Classes <ul><li>METALS: Co-Cr alloys, Stainless steels, Gold, Titanium alloys, Vitallium, Nitinol (shape memory alloys). </li></ul><ul><li>Uses: orthopedics, fracture fixation,dental and facial reconstruction, stents. </li></ul><ul><li>CERAMICS: Alumina, Zirconia, Calcium Phosphate, Pyrolitic Carbon. </li></ul><ul><li>Uses: orthopedics, heart valves, dental reconstruction. </li></ul><ul><li>COATINGS: Bioglasses, Hydroxyapatite, Diamond-like carbon, polymers. </li></ul><ul><li>Uses: orthopedics, contact lenses, catheters, in-growth. </li></ul>
  9. 9. Biomaterial Classes cont. <ul><li>POLYMERS: Silicones, Gore-tex (ePTFE), polyurethanes, polyethylenes(LDPE,HDPE,UHMWPE,), Delrin, polysulfone, polymethylmethacrylate. </li></ul><ul><li>Uses: orthopedics, artificial tendons,catheters, vascular grafts, facial and soft tissue reconstruction. </li></ul><ul><li>HYDROGELS: Cellulose, Acrylic co-polymers. </li></ul><ul><li>Uses: drug delivery, vitreous implants,wound healing. </li></ul><ul><li>RESORBABLES: Polyglycolic Acid, Polylactic acid, polyesters. Uses: sutures,drug delivery, in-growth, tissue engineering. </li></ul>
  10. 10. Applications of Biomaterials <ul><li>Orthopedics: artificial hips,knees, shoulders, wrists; intervertebral discs; fracture fixation; bone grafts. </li></ul><ul><li>Cardiovascular: heart valves, PTCA balloons, pacemakers, catheters, grafts, stents. </li></ul><ul><li>Dental: enamels, fillings,prosthetics, orthodontics. </li></ul><ul><li>Soft tissue: wound healing, reconstructive and augmentation, occular. </li></ul><ul><li>Surgical: staples, sutures, scalpels. </li></ul>
  11. 11. Orthopedic Implants
  12. 12. Dental Implants
  13. 13. Cardiovascular devices
  14. 14. LVAS: Pump Drive Unit
  15. 15. Soft Tissue Reconstruction
  16. 16. Challenges <ul><li>Biofixation and stability of an implant </li></ul><ul><li>Long-term wear and debris generation </li></ul><ul><li>In-vivo degradation through complex bio-chemi-mechanical actions </li></ul><ul><li>Inert materials do not elicit “pro-active” responses in the body </li></ul><ul><li>Solutions are often temporary for tissue replacement </li></ul>