-
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
The veneering porcelain sintered on zirconia is widely used in dental prostheses, but
repeated mechanical loadings may cause a fracture such as edge chipping or delamination.
In order to predict the crack initiation angle and fracture toughness of zirconia/veneer bilayered
components subjected to mixed mode loadings, the accuracy of a new and
traditional fracture criteria are investigated. A modified maximum tangential stress
criterion considering the effect of T-stress and critical distance theory is introduced, and
compared to three traditional fracture criteria. Comparisons to the recently published
fracture test data show that the traditional fracture criteria are not able to properly predict
the fracture initiation conditions in zirconia/veneer bi-material joints. The modified
maximum tangential stress criterion provides more accurate predictions of the experimental
results than the traditional fracture criteria
Be the first to like this
Login to see the comments