Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

DSD-NL 2017 Anura3D MPM for Geotechnical Engineering _ Toepassingen - Rohe

1,134 views

Published on

Presentatie door Alexander Rohe (Deltares) op de Geo Klantendag, tijdens de Deltares Software Dagen- Editie 2017. Donderdag 15 juni 2017, Delft.

Published in: Software
  • Be the first to comment

  • Be the first to like this

DSD-NL 2017 Anura3D MPM for Geotechnical Engineering _ Toepassingen - Rohe

  1. 1. Anura3D MPM for Geotechnical Engineering Alexander Rohe 15 June 2017 Deltares Software Dagen, GeoKlantendag
  2. 2. Anura3D applications: Overview
  3. 3. Focus applications at Deltares dikes, dams, landslides installation, impact flowslides, erosion, liquefaction
  4. 4. Modelling large deformation multi-phase problems Unsaturated soils • Rain effects • Slope stability • Collapses Internal erosion (migration of solid particles under action of flow) • Internal instability (suffusion) • Piping • Stability of water retaining structures Soil-water-structure interaction • Seepage flow • Slope liquefaction • Submerged collapses • Dropping geocontainers • Erosion (macro/external) Applications • Slope failures • Column collapse • Consolidation problems • Dike stability • Pile installation • Shallow foundation • Impacts on structures • Water reservoir Anura3D v2017.1
  5. 5. Submerged sand column collapse 0.5m 0.2m0.9m 0.5m SOIL WATER z ztop SOIL (Mohr-Coulomb) rs = 2700 kg/m3 n = 0.4 nmax = 0.5 E = 1000 kPa n = 0.3 c = 0 kPa j = 30o y = 5o WATER rL = 1000 kg/m3 m = 8.9 · 10-7 kPa·s K = 21300 kPa “liquefying” “breaching” coarse sand fine sand soil porosity [-] liquid concentration[-] soil porosity [-] liquid concentration[-] Martinelli M., Rohe A. (2015)
  6. 6. Seepage flow and slope liquefaction 2.0 m 1.0 m SOILWATER 2.2 m 1 2 1.0m SOIL (Mohr-Coulomb) rs = 2700 kg/m3 n = 0.4 nmax = 0.5 E = 1000 kPa n = 0.3 c = 0 kPa j = 30o y = 5o Dp = 2.0 mm WATER rL = 1000 kg/m3 m = 8.9 · 10-7 kPa·s K = 21300 kPa Darcy permeability k = 0.053 m/s horizontal displacement solid [m] Martinelli M. (2015 )
  7. 7. Geocontainers Property Units Value Solid Density rs kg×m-3 2700 Young modulus Es kPa 10×103 Poisson ratio n - 0.3 Initial porosity n0 0.5 Grain diameter m 2×10-3 Liquid Density rl kg×m-3 1000 Bulk modulus Kl kPa 20×103 Viscosity ml kPa×s 1×10-6 12993 nodes 6300 elements 108000 material points Zuada Coelho B., Rohe A., Soga K. (2017)
  8. 8. Internal instability
  9. 9. Internal erosion processes clean water inflow Erosion law ̴ vL Initial porosity = 0.3 Maximum porosity = 0.5 concentration of fluidized grains in the liquid flow evolution of porosity Yerro A., Rohe A., Soga K. (2017)
  10. 10. Shallow instability induced by heavy rains unsaturated soil 0® Strength parameters ¯ Suction 0s =
  11. 11. Shallow instability induced by heavy rains Young’s modulus 10 MPa Cohesion c’ 1 kPa Friction angle φ’ 20 º Δcmax 15 kPa B 0.07 A 0.01 Solid density 2700 kg/m3 Porosity 0.35 Poisson’s coefficient 0.33 Liquid density 1000 kg/m3 Gas density 1 kg/m3 Liquid bulk modulus 100 MPa Gas bulk modulus 0.01 MPa Liquid viscosity 10-3 kg/m·s Gas viscosity 10-6 kg/m·s Intrinsic permeability liquid 10-10 m2 Intrinsic permeability gas 10-11 m2 General characteristics of the soil Mohr-Coulomb parameters Sandy clay Yerro A. , Alonso E.E., Pinyol N. (2015)
  12. 12. One-phase MPM formulation - solid Example of solid column collapse with Mohr-Coulomb soil model
  13. 13. One-phase MPM formulation - solid cohesion c = 5 kPa -> 0 kPa friction angle = 25 deg
  14. 14. One-phase MPM formulation - liquid collapsing water column standing wave PURE LIQUID BEHAVIOR
  15. 15. One-phase MPM formulation - liquid sinking solid floating solid
  16. 16. Two-phase MPM formulation = ℎ validation of 2-phase formulation: 1D consolidation, small strain = + (consolidation coefficient) h
  17. 17. Two-phase MPM formulation validation of 2-phase formulation: 1D consolidation, large strain
  18. 18. Contact algorithm in Anura3D Oso landslide (Yerro & Soga, 2017)
  19. 19. Contact algorithm in Anura3D Rolling ball
  20. 20. Erosion by (ground-)water flow Anura3D numerical simulation vs physical modeling tests
  21. 21. Anura3D numerical simulation vs physical modeling tests Geocontainer
  22. 22. water movement soil displacement Anura3D numerical simulation vs physical modeling tests soil porosity [-] liquid concentration [-] coarse sand: ”liquefying” fine sand: “breaching” soil porosity [-] liquid concentration [-] very dense sand: “breaching” Submerged soil
  23. 23. dam base tailings contact surface displacement horizontal velocity [m/s] Anura3D numerical simulation vs physical modeling tests clay water Tailings Dam
  24. 24. Anura3D numerical simulation vs physical modeling tests centrifuge tests at Deltares (Huy, 2008) Pile installation
  25. 25. Anura3D numerical simulation vs field test pore pressure infiltration Yerro A. (2015), Soga K. et al. (2015) Δpw = 110 kPa 15 m 18 m 18 m 20 m 6 m weathered Gault clay unweathered Gault clay Slope failure by pore pressure infiltration
  26. 26. Anura3D numerical simulation vs field case Ward & Day, 2011 October 9th, 1963 hw Basal sliding surface 560700 m 260 m 200 300 510 m 36 º Rock mass P0 P1 (Alonso and Pinyol, 2010) Vajont failure: field case validation
  27. 27. Vajont failure analysis 5ºbj¢ = 0ºbj¢ = 500 m 350 m Yerro A., Pinyol N.M., Alonso E.E.(2016)
  28. 28. Vajont failure analysis Material degradation depending on geometry rounded kink Yerro A. (2016)
  29. 29. Anura3D numerical simulation Soil-Wheel interaction Angular velocity 1 s-1
  30. 30. Anura3D numerical simulation Ceccato F., Simonini P. (2016) Impact on structures
  31. 31. Anura3D - Joint Industry Project SIMON Soil density after installation (FLOW NS-VIP project, 2015) Shear stresses [kPa] Stresses during lateral loading, installation effects considered (FLOW NS-VIP project, 2015) Simulation of installation of monopiles
  32. 32. Stresses Al-Kafaji (2013) Driven pile installation
  33. 33. Jacked pile installation horizontal effective stress [kPa] during installation Phuong N.T.V., Van Tol A.F., Elkadi A.S.K., Rohe A. (2016)
  34. 34. Cone penetration in partially drained conditions pexcess [kPa] Ceccato F. et al. (2014) 0 150kPa excess pore pressure dissipation pore pressure distribution at the cone shoulders
  35. 35. Summary Development, validation and application of advanced Anura3D MPM Software for modelling soil–water–structure interaction problems involving • (very) large deformations, • quasi-static/dynamic behaviour, cyclic loading, earthquakes, • (very) soft soils, consolidation and creep, • (internal) erosion, piping and scour, • sedimentation, • static/dynamic liquefaction and breaching, • installation problems (piles, CPT), • reinforcements, flood defences Focus: applications beyond standard geotechnical or hydraulic software

×