General Presentation Uf

5,198 views

Published on

Glands about Ultra filteration

0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
5,198
On SlideShare
0
From Embeds
0
Number of Embeds
20
Actions
Shares
0
Downloads
214
Comments
0
Likes
4
Embeds 0
No embeds

No notes for slide
  • Are there any questions?
  • General Presentation Uf

    1. 1. NORIT XIGA TM Dead-end Ultrafiltration in water treatment
    2. 2. <ul><li>Introduction </li></ul><ul><li>Norit XIGA™ dead-end Ultrafiltration </li></ul><ul><li>UF Process Modes </li></ul><ul><li>Main UF parameters </li></ul><ul><li>Large scale water treatment: examples </li></ul><ul><li>Summary </li></ul>Contents
    3. 3. 1. Introduction <ul><li>Gradual decrease of global water sources </li></ul><ul><li>Boost in the development new technology </li></ul><ul><li>Water from non-conventional sources: </li></ul><ul><ul><li>WWTP effluent </li></ul></ul><ul><ul><li>Sea water </li></ul></ul><ul><li>Application of membrane technology: </li></ul><ul><ul><li>reverse osmosis (1960’s) </li></ul></ul><ul><ul><li>micro-, ultra- and nanofiltration (1980/90’s) </li></ul></ul>
    4. 4. 1. Introduction Micro Filtration 10 um – 100 nm Ultra Filtration 100 - 10 nm Nano Filtration 10 - 1 nm Reverse Osmosis < 1 nm colloids viruses colour hardness pesticides salts water giarda crypto bacteria colour hardness pesticides salts water colloids viruses salts water colour hardness pesticides salts water
    5. 5. <ul><li>Dead-end filtration: </li></ul><ul><li>advantages: </li></ul><ul><ul><li>simple process set-up </li></ul></ul><ul><ul><li>low energy consumption </li></ul></ul><ul><ul><li>low investment </li></ul></ul><ul><li>disadvantages: </li></ul><ul><ul><li>laminar flow </li></ul></ul><ul><ul><li>discontinuous concentrate discharge </li></ul></ul><ul><ul><li>risk of pore and membrane channel plugging </li></ul></ul><ul><ul><li>sensitivity to changes in the feed properties </li></ul></ul>2. Norit XIGA™ dead-end Ultrafiltration feed water permeate cake
    6. 6. 2. Norit XIGA™ dead-end Ultrafiltration <ul><li>Cross-flow Filtration: </li></ul><ul><li>advantages: </li></ul><ul><ul><li>turbulent flow </li></ul></ul><ul><ul><li>continuous concentrate discharge </li></ul></ul><ul><ul><li>control of cake-layer build-up </li></ul></ul><ul><li>disadvantages: </li></ul><ul><ul><li>more complex process layout </li></ul></ul><ul><ul><li>high(er) energy consumption </li></ul></ul><ul><ul><li>high(er) investment cost </li></ul></ul>feed water permeate cake
    7. 7. 2. Norit XIGA™ dead-end Ultrafiltration Main skills UF: >Log 4 removal of viruses Complete removal of suspended solids Removal of micro-organisms: >Log 6 removal of bacteria Partial removal dissolved matter (TOC, COD, BOD) through binding to suspended matter Cryptosporidium (2-3 µm)
    8. 8. 0.8 mm fibres pore size 20-25 nm 2. Norit XIGA™ dead-end Ultrafiltration 8 inch X-Flow UF membrane module (40 m2) Bypass tubes
    9. 9. 2. Norit XIGA™ dead-end Ultrafiltration Membrane housing Feed Permeate Membrane Module Feed Permeate Bypass tubes
    10. 10. 2. Norit XIGA™ dead-end Ultrafiltration Module 1 Module 2 Inter-connector Bypass tubes
    11. 11. 2. Norit XIGA™ dead-end Ultrafiltration Main skills Norit XIGA™-concept: Dead-end  low energy consumption, simple design Horizontal  small footprint, easy module handling 8 inch  world standard for RO Bypass tubes  improved fouling distribution between modules, reduced fouling tendency Fully automated  In-situ cleaning of membranes operation
    12. 12. 3. UF process modes Filtration
    13. 13. <ul><li>Filtration: inside  outside </li></ul>3. UF process modes membrane feed permeate
    14. 14. 3. UF process modes Cake build-up Pore blocking BackWash
    15. 15. <ul><li>Backwash: outside  inside </li></ul>3. UF process modes concentrate backwash membrane
    16. 16. 3. UF process modes Backwash
    17. 17. 3. UF process modes Adsorption Chemically Enhanced Backwash
    18. 18. 3. UF process modes Chemically Enhanced Backwash
    19. 19. 3. UF process modes -250 -200 -150 -100 -50 0 50 100 time flux Filtration Filtration Filtration Filtration BW BW CEB
    20. 20. 3. UF process modes Single stage UF 100% 80-95% 5-20% Feed Concentrate Permeate Typical: Recovery 80-95%
    21. 21. 3. UF process modes Dual stage UF 100% Feed 1° Conc. 1° Permeate 95-99,5% 2° Conc. 0,5 - 5% UF1 UF2 2° Permeate Typical: Recovery 95–99,5%
    22. 22. 4. UF main parameters Flux: Yield per square meter membrane surface Ltr/m 2 .h or lmh TMP: Trans Membrane Pressure P feed – P perm (bar) P f P p Feed Permeate Typical (filtration): 60 – 130 lmh Typical (backwash): 250 lmh Typical (filtration): 0,2 – 0,8 bar Typical (backwash): 1,0 – 2,0 bar
    23. 23. 4. UF main parameters <ul><li>Pressure Correction Factor = TMP (bar) </li></ul><ul><li>Temp. Corr. Factor (to ref. temp, mostly 20°C) =   impact water viscosity & “membrane effect” on TMP at different temperatures) </li></ul>(Ltr/m 2 .h.bar).  or (lmh/bar).  Permeability: Flux corrected for Pres. & Temp. (also normalised flux) Example: Temperature impact on permeability: If T=30°C     Perm=152 lmh/bar If T=20°C     Perm=200 lmh/bar If T=5°C     Perm=318 lmh/bar Typical: 150 – 350 lmh/bar Flux = 100 lmh TMP = 0,5 bar P f P p
    24. 24. 4. UF main parameters Typical: 15 – 60 min Typical: 30-50 sec Typical: 6 – 48 hrs Typical: 80 - 95 % min Filtration time: Duration of 1 filtration period % Recovery: Average permeate flow Average feed flow Backwash time: Duration of 1 backwash sec CEB interval: Period between 2 CEB’s hrs
    25. 25. 4. UF main parameters
    26. 26. 5. Large scale water treatment WWTP Surface water Borehole/Spring water Seawater WWTP effluent Potable water production UF RO
    27. 27. Irrigation water Process water Potable water Flux 70 - 100 lmh Recovery 80 - 90% 5a. Surface water
    28. 28. 5a. Surface water Purit, The Netherlands Process Water (120 m 3 /h) Klazienaveen, The Netherlands Irrigation Water (300 m 3 /h)
    29. 29. 5b. Borehole/Spring water Potable Water Flux 100 - 130 lmh Recovery 95 - 99%
    30. 30. 5b. Potable water PWN Heemskerk, The Netherlands 2900 m 3 /h PWN Heemskerk, The Netherlands pilotplant 10 m 3 /h Keldgate, United Kingdom 3700 m 3 /h Clay Lane, United Kingdom (6700 m 3 /h)
    31. 31. 5c. Seawater SWRO pre-treatment for: Process Water Potable Water Flux 80 - 100 lmh Recovery 80 - 90%
    32. 32. 5c. Seawater UAE Potable water 450 m 3 /h
    33. 33. 5d. WWTP Effluent From WWTP effluent to: Irrigation Water Process Water Grey Water Potable Water (indirect) Flux 65 - 90 lmh Recovery 75 - 85%
    34. 34. 5d. WWTP Effluent Windhoek, Namibië Potable water 850 m 3 /h Baranco Seco, Canaries Process water 1000 m 3 /h
    35. 35. 6. Summary Norit Dead-end XIGA TM Ultrafiltration: Large number of applications Fully automated operation, easy operation Compact design with small footprint, easy module loading and replacement Superb filtrate quality; complete removal of SS & micro-organisms partial removal of TOC, COD & BOD

    ×