Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Dammed If You Do, Damned If You Dont


Published on

Global sea level rise and the consequences for the built environment

In light of the impacts of recent natural disasters, including the cases of Hurricane Katrina and Andrew, the need is evident for a proactive and transparent Engineering Policy approach to protect the coastal built environment. This response is especially critical considering climate change and the potential for global rise in mean sea level accompanied by increases in storm intensity and frequency.

This talk presents our simulation of the design and construction response required to protect the world's major ports from a significant rise in mean sea level. This simulation was developed through engineering design, GIS (Geographical Information System) Science, hydrologic modeling, and time scheduling based on a comparison of the project requirements to the current industry capacity. While our preliminary results show that the cost of protecting only the 177 most significant ports in terms of economic value (amongst nearly 3,000 major ports total) will be significant, our analysis also shows that the most troubling aspect of an engineering and construction response to sea level rise is the requirement for materials. This will cause dramatic shortages in sand, gravel and other materials, which will ripple through the entire construction industry.

Published in: Business, Technology
  • Be the first to comment

  • Be the first to like this

Dammed If You Do, Damned If You Dont

  2. 2. Introduction
  3. 3. How we got here… “ With a little research and advice from the professors, putting together a basic dike design was fairly straightforward… after that, I was hooked! Countless hours later, the design process continues…” – Nathan Chase
  4. 4. Some striking results… <ul><li>David Newell </li></ul><ul><li>Gravel shortages </li></ul><ul><ul><li>50+ years for China </li></ul></ul><ul><ul><li>65+ years for India </li></ul></ul>
  5. 5. Some striking results… <ul><li>Vivien Chua </li></ul><ul><li>The first step in reliable engineering design is modeling - we are closer to creating a better world! </li></ul>
  6. 6. Background and Need
  7. 7. Coastal Development & Ports <ul><li>Over half of world’s population lives within 200km of the coast (UN, 2001) 1 </li></ul><ul><li>35% coastal pop. growth projected between 1995-2025 (Columbia U.) 2 </li></ul><ul><li>7.187 billion metric tons of seaborne trade in 2006 (AAPA) 3 </li></ul>
  8. 8. Sea Level Rise – Fact or Fiction? Model does not include “future dynamical changes in ice flow”
  9. 9. <ul><li>Hurricane Katrina </li></ul><ul><li>Hurricane Andrew </li></ul>Natural Disasters
  10. 10. Cyclone Nargis
  11. 11. Project Overview
  12. 12. Project Overview <ul><li>Analyze coastal protection design alternatives </li></ul><ul><li>Quantify current/projected capacity of design & construction industry </li></ul><ul><li>Model the response using 2D/3D/4D tools and disseminate information </li></ul><ul><li>Compare capacity to what is needed </li></ul>
  13. 13. Limited understanding of DCI capacity <ul><li>No official statistics for US </li></ul><ul><li>Natural disasters can cause significant impact (e.g., Hurricane Katrina/Rita) </li></ul><ul><li>Difficulty in compiling global data </li></ul><ul><li>Resources are allocated on a regional or national basis e.g. cranes, dredges, steel </li></ul>
  14. 14. How to Protect Ports <ul><li>Define the protection strategy and scope </li></ul><ul><ul><li>e.g. dikes, levees, landfill for port surface </li></ul></ul><ul><li>Develop a “minimum reasonable design” for the scope </li></ul><ul><li>Obtain cost data reflective of regional conditions </li></ul><ul><li>Compare the design and scope to global data on materials, weather, construction goods and services, etc. </li></ul>
  15. 15. Why ports? <ul><li>Fixed infrastructure that cannot be relocated easily </li></ul><ul><li>High economic value, easy to measure </li></ul><ul><li>Clear baseline of what will be protected </li></ul><ul><li>Data availability </li></ul><ul><li>Simplifying assumption (difficulties with residential/commercial developments, undeveloped areas, etc.) </li></ul>
  16. 16. Port Selection 1 Twenty-foot Equivalent Unit (TEU) is one 20-ft container (one 40-ft container = 2 TEUs)
  17. 17. Methodology for Case Studies <ul><li>Goal: evaluate and strengthen project by performing detailed case studies in different regions </li></ul><ul><li>Overall procedure: </li></ul><ul><ul><li>Site identification </li></ul></ul><ul><ul><li>Conceptual design alternatives evaluation </li></ul></ul><ul><ul><li>Schematic design development </li></ul></ul><ul><ul><li>Incorporation of results in overall project </li></ul></ul><ul><li>Tools have been developed to simplify the data collection and design element </li></ul>
  18. 18. Current Status
  19. 19. Current Status <ul><li>Port Characteristics </li></ul><ul><li>World’s most important 177 ports, integrated into Google Earth </li></ul>
  20. 20. Current Status <ul><li>GIS model “automatically” determines: </li></ul><ul><li>- Protection length </li></ul><ul><li>- Average protection height </li></ul>
  21. 21. Current Status <ul><li>Cost and availability/capacity data (US, Asia, Europe) </li></ul><ul><ul><li>RS Means </li></ul></ul><ul><ul><li>UN </li></ul></ul><ul><ul><li>Countrywatch </li></ul></ul><ul><ul><li>Etc. </li></ul></ul>
  22. 22. Current Status <ul><li>Coastal Protection Design tool </li></ul><ul><ul><li>Offshore dike, navigation lock, pump station, maintenance dredging </li></ul></ul>Dike Lock Pump Port Open Ocean Dredge River flooding Silt Wave overtopping, scour
  23. 23. Long Beach Harbor a Case Study <ul><li>“ Manual” design 10.5 miles long 25m high </li></ul><ul><li>- Cost: $1693 million </li></ul><ul><li>Time to construct: 21.1 years </li></ul><ul><li>“ Model” design 10 miles long 9m high </li></ul><ul><li>- Cost: $712 million </li></ul><ul><li>- Time to construct: 9.7 years </li></ul>
  24. 24. Case study: San Francisco Bay
  25. 25. 1 meter sea level rise predicted by 2100!!! Sea level record at Golden Gate
  26. 26. Areas at risk in San Francisco Bay <ul><li>GIS modeling </li></ul><ul><li>2D hydrodynamic modeling </li></ul>1 meter sea level rise
  27. 27. Sacramento-San Joaquin delta Golden Gate channel Calibration at NOAA station Golden Gate (9414290)
  28. 28.
  29. 29. What if we do nothing? <ul><li>2D hydrodynamic modeling </li></ul><ul><ul><li>Flooding risks </li></ul></ul><ul><ul><li>Changes to circulation patterns </li></ul></ul><ul><ul><li>Deterioration of water quality </li></ul></ul><ul><ul><li>Disappearing habitats/ecosystems </li></ul></ul><ul><ul><li>Modifications to sediment distributions </li></ul></ul>
  30. 30. Erosion of salt ponds & submerging tidal marshes Average depth of tidal marshes and salt ponds = 0.1 m 1 m sea level rise
  31. 31. Action plan: Partial intrusion barrage at Golden Gate <ul><li>Regulate amount of sea water entering and leaving the bay </li></ul><ul><li>Sea water entering bay as flood tide </li></ul>
  32. 32. A tidal power barrage? <ul><li>Estimate of tidal power at Golden Gate </li></ul>where ρ = density of sea water = 1000 kg/m 3 , Q = flow rate, g = acceleration due to gravity = 9.81 m 2 /s, h = tidal amplitude In a neap-spring cycle, Max Q = 5000 m 3 /s Max h = 2 m Max P = 1x10 8 W
  33. 33. Results
  34. 34.
  35. 35. Measuring our Results
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
  41. 41.
  42. 42.
  43. 43. Google Earth Demonstration <ul><li>Netherlands </li></ul><ul><li>Stanford/S.F. Bay </li></ul><ul><li>San Pedro Bay (L.A.) </li></ul><ul><li>Port Characteristics </li></ul><ul><li>Port Polygons </li></ul><ul><li>4D Model </li></ul>
  44. 44. Future Directions
  45. 45. Collaborations, Raising Awareness <ul><li>New collaborations in Netherlands, India, etc. </li></ul><ul><li>Stanford Engineering & Public Policy Framework Project: Climate Change and its Impact on the Built Environment </li></ul><ul><li>Write journal articles </li></ul><ul><li>Make GoogleEarth project data available </li></ul>
  46. 46. Fall 2008 Undergrad/Grad Course <ul><li>3 unit CEE course, but need students in economics, public policy, computer science </li></ul><ul><li>Focus: Principles & practices for designing a marine construction project, as applied to the Stanford Engineering Framework project </li></ul><ul><ul><li>Week 1: Introduction, project background, reading on case studies (Netherlands, Japan, Hurricane Katrina) </li></ul></ul><ul><ul><li>Week 2: Marine Construction industry: equipment, materials, labor (guest lecturer from industry) </li></ul></ul><ul><ul><li>Week 3: Site selection and characterization (guest lecture on coastal development) </li></ul></ul><ul><ul><li>Week 4-6: Conceptual design (guest lecture) </li></ul></ul><ul><ul><li>Week 7-9: Schematic design (guest lecture on hydrologic modeling) </li></ul></ul><ul><ul><li>Week 10: Writing up and presenting results (in class presentations, final reports) </li></ul></ul><ul><li>Other elements: intensive collaboration session with students from Delft, Madras/Chennai </li></ul>
  47. 47. Acknowledgements <ul><li>Fred Raichlen, California Institute of Technology </li></ul><ul><li>Kyle Johnson, Great Lakes Dredge & Dock </li></ul><ul><li>Bob Bittner, Ben C. Gerwick Inc. </li></ul><ul><li>Andrew Peterman, Walt Disney Imagineering </li></ul><ul><li>Chris Holm, Walt Disney Co. </li></ul><ul><li>Austin Becker, Rhode Island Sea Grant </li></ul><ul><li>Christian Brockmann, Bremen University of Applied Sciences </li></ul><ul><li>Prior Stanford students: Mike Dvorak, Lakshmi Alagappan, Evridiki Fekka, Elisa Zhang </li></ul>
  48. 48. Questions?