Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Scribd will begin operating the SlideShare business on December 1, 2020 As of this date, Scribd will manage your SlideShare account and any content you may have on SlideShare, and Scribd's General Terms of Use and Privacy Policy will apply. If you wish to opt out, please close your SlideShare account. Learn more.
Published on
Logistic Regression can not only be used for modeling binary outcomes but also multinomial outcome with some extension. In this talk, DB will talk about basic idea of binary logistic regression step by step, and then extend to multinomial one. He will show how easy it's with Spark to parallelize this iterative algorithm by utilizing the in-memory RDD cache to scale horizontally (the numbers of training data.) However, there is mathematical limitation on scaling vertically (the numbers of training features) while many recent applications from document classification and computational linguistics are of this type. He will talk about how to address this problem by L-BFGS optimizer instead of Newton optimizer.
Bio:
DB Tsai is a machine learning engineer working at Alpine Data Labs. He is recently working with Spark MLlib team to add support of L-BFGS optimizer and multinomial logistic regression in the upstream. He also led the Apache Spark development at Alpine Data Labs. Before joining Alpine Data labs, he was working on large-scale optimization of optical quantum circuits at Stanford as a PhD student.