Deep Learningを筆頭に、データから意味やパターンを抽出する機械学習は、いまや誰もが使えるツールになりつつあります。
本セッションでは、AIブームわく最中、機械学習がなぜ大事なのか、どんな使い方をするのが重要になっていくかについて展望しつつ、「見えていなかったものを見出す」というネクストフロンティアになるであろう機械学習の方向性についてお話します。
Tatsuya ShirakawaResearcher, Deep Learning - ABEJA, Inc. at ABEJA, Inc.
5. Daniel Kehneman
There are two modes of thought
System 1(勘・直感)
fast, instinctive and emotional
System 2(論理的思考)
Slower, more deliberative, and more logical
5
MLはコッチ
10. Software 2.0
Software 1.0 — Write a program that works
- Explicit instructions to the computer which identifies a specific point in
program space with some desirable behavior
Software 2.0 — Find a desirable program that fits to data
- A rough skelton of the code (e.g. NNs) that identifies a subset of program
space to search
- Search this space for a program that works
10
11. Why Software 2.0?
"it is significantly easier to collect the data (or more generally, identify a
desirable behavior) than to explicitly write the program”
11
14. Paradigm Change
Things which is hard to define/code can be learn implicitly from data
14
00110110110
11010101010
11010111011
10110110100
01010111011
Coding Learn
Software
16. Bigger, Deeper and Better
16
Large Scale GAN Training for High Fidelity Natural Image Synthesis (2018.9)
BigGAN — 巨⼤な計算リソースで学習された巨⼤なモデルで⾼解像度画像の⽣成に成功。
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism (2018.11)
GPipe — 巨⼤なNNを効率的に学習するための分散学習ライブラリ。ImageNetで新SOTA。
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018.10)
BERT — 巨⼤なモデルを巨⼤なデータで教師なしすることで⾔語理解系タスクにたいする強⼒な初期モデルを獲得
Language Models are Unsupervised Multitask Learners (2019.2)
GPT-2 — 巨⼤な⾔語モデルをクリーンで巨⼤なデータで学習し、⽂書⽣成系タスクをゼロショットで⾼精度にこなせるモデルを獲得
17. BigGAN — Class Conditionalな⾼解像度画像⽣成
既存のSOTA⼿法(SA-GAN)に対して、バッチサイズやチャンネル数を増やし、各種⼯夫を加え
ることで、512x512のClass Conditionalな⾼精度画像⽣成に成功。既存SOTAを⼤きく上回るスコ
アを達成。
17“Large Scale GAN Training for High Fidelity Natural Image Synthesis ”
23. Can You See Gender/Age from Ears?
23
0 10 20 30 40 50 60 70 80
Age
24. Can You See Gender, Age and BMI from Eyes (Fundus)?
How about Heart / Brain Diseases?
24
0 10 20 30 40 50 60 70 80
Age
25. DNNs Can See Gender/Age from Ears
D. Yaman+, “Age and Gender Classification from Ear Images”, IWBF2018
25
Age: 18-28 / 29-38 / 39-48 / 49-58 / 58-68+
26. DNNs Can See Gender, Age, BMI and even
Brain/Heart Diseases from Eyes
R. Poplin+, “Prediction of cardiovascular risk factors from retinal fundus
photographs via deep learning”, Nature Biomedical Engineering 2018
26
28. Discovery 2.0
Discovery 1.0 — Fully Utilizing Domain Knowledge
- explicit construction of hypothesis is constructed mainly from
domain knowledge or deep understanding of the domain
Discovery 2.0 — Seeing by Training
- capture some aspects of data by training models on it
- not new but should be emphasized again
28
※ serendipity could be another source of discovery :)
29. Discovery 2.0 — Seeing by Training
1. Seeing Predictability / Correlation
29
30. Discovery 2.0 — Seeing by Training
1. Seeing Predictability / Correlation
Beyond human imagination
- Every data should be connect to create new connections
Correlation first
- Correlation finding is the first goal
- Causality should be checked post-hook if possible
Relatively cheap to apply if data exists
- Models should have weak domain dependence (e.g. NNs)
30
31. Graph Convolutional Neural Networks (GCNNs)
A specific type of neural networks which is
designed for processing connectivity of data well
31
Tech blog http://tech-blog.abeja.asia/
- 異空間への埋め込み!Poincare Embeddingsが拓く表現学習の新展開
- 機は熟した!グラフ構造に対するDeep Learning、Graph Convolutionのご紹介
- 双曲空間でのMachine Learningの最近の進展
- より良い機械学習のためのアノテーションの機械学習
33. Discovery 2.0 — Seeing by Training
1. Seeing Predictability / Correlation
2. Representation Learning / Embeddings
33
T. Mikolov+, “Distributed representation of words and phrases and their
compositionality, NeurIPS2013
https://github.com/facebookresearch/poincare-embeddings
34. Hyperbolic Space
• Manifolds with positive constant sectional curvature
• Tree structure is naturally aligned in the space
→ automatic tree structure detection!
34
Tech blog http://tech-blog.abeja.asia/
- 異空間への埋め込み!Poincare Embeddingsが拓く表現学習の新展開
- 機は熟した!グラフ構造に対するDeep Learning、Graph Convolutionのご紹介
- 双曲空間でのMachine Learningの最近の進展
- より良い機械学習のためのアノテーションの機械学習
「異空間散歩!双曲空間を歩いてみよう。」
36. Mixed-Curvature Representations
A. Gu+, “Learning Mixed-Curvature Representations in Products of model Spaces”, ICLR2019
ユークリッド空間、球⾯、双曲空間の積空間への埋め込みを構成することで、
様々な(断⾯)曲率の空間への埋込を可能にした。
36
41. ⼈格⼼理学(Personality Psychology)
Personality Psychology is a scientific study which aims to show how people
are individually different due to psychological forces (wikipedia).
41
Personality Traits(特性)
Features
Personality Types(類型)
Clustering / Classification
あなたは◯◯タイプ!
ex) ex)
42. Big 5(Five Factor Model, FFM)
42
1. Openness(経験への開放性)
is a general appreciation for art, emotion, adventure,
unusual ideas, imagination, curiosity, and variety of experience
2. Conscientiousness(誠実性)
is a tendency to display self-discipline, act dutifully, and strive
for achievement against measures or outside expectations
3. Extraversion(外向性)
is characterized by breadth of activities (as opposed to depth), surgency
from external activity/situations, and energy creation from external means
4. Agreeableness(協調性)
trait reflects individual differences in general concern for social harmony
5. Neuroticism(神経症的傾向)
is the tendency to experience negative emotions, such as anger, anxiety, or depression
(wikipedia)