Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Electrolisis soluciones

1,424 views

Published on

juego2

Published in: Art & Photos
  • Be the first to comment

  • Be the first to like this

Electrolisis soluciones

  1. 1. - 1 - ELECTRÓLISIS 1. Suponiendo que la oxidación anódica tiene lugar con un rendimiento del 80%. Calcúlese cuánto tiempo tendrá que circular una corriente de 5 amperios para oxidar 15 gramos de Mn2+ a MnO4 − Dato: Masa atómica del Mn = 55. Solución. Según las leyes de Faraday, las masas de las distintas sustancias liberadas en la electrolisis son directamente proporcionales a los pesos equivalentes de las sustancias y a la cantidad de carga que atraviesa la cuba según la expresión: F Q grEqºn =− donde: • grEq m grEqºn − =− siendo v M grEq =− y v la valencia red-ox (nº de e− que se transfieren en la semirreacción). • Q, cantidad de carga que atraviesa el sistema. Q = I · t • F, constante de Faraday (F = 96500 C/Eq) La valencia red-ox se obtiene de la semirreacción de oxidación de Mn2+ a permanganato: +−−+ +→−+ H8MnOe5OH4Mn 42 2 ( ) 5 MnM grEq =− Sustituyendo en la expresión de las leyes de Faraday: ( ) ( ) F tI v MnM Mnm oxdRe ⋅ = − Eq C96500 tA5 Eq gr 5 55 gr15 ⋅ = Despejando se obtiene el tiempo en segundos. t = 26318 s Este es el tiempo teórico, para calcular el tiempo real hay que tener en cuenta el rendimiento del proceso. 100 t t R R T ⋅= seg17min8H9s32898100 80 26318 100 R t t T R <>=⋅=⋅=
  2. 2. - 2 - 2. Una corriente de 4 amperios circula durante 1 hora y 10 minutos a través de 2 células electrolíticas que contienen, respectivamente, sulfato de cobre (II) y cloruro de aluminio. Datos: Masas atómicas: Cu = 63´5 y Al = 27´0; Constante de Faraday F = 96.500 C·eq−1 a) Escriba las reacciones que se producen en el cátodo de ambas células electrolíticas. Solución. En la primera cuba (CuSO4 → Cu2+ + SO4 2− ) se deposita el cobre según: Cue2Cu2 →+ −+ En la segunda cuba (Al2(SO4)3 → 2Al3+ + 3SO4 2− ) se deposita el aluminio según: Al3+ + 3e− → Al b) Calcule los gramos de cobre y de aluminio metálicos que se habrán depositado. Solución. Según las leyes de Faraday, las masas de las distintas sustancias liberadas en la electrolisis son inversamente proporcionales a los pesos equivalentes de las sustancias y directamente proporcionales a la cantidad de carga que atraviesa la cuba según la expresión: F Q grEqºn =− Donde: • grEq m grEqºn − =− siendo v M grEq =− y v la valencia red-ox (nº de e− que se transfieren en la semirreacción). • Q, cantidad de carga que atraviesa el sistema. Q = I · t • F, constante de Faraday (F = 96500 C/Eq) Por estar en serie, por las dos cubas pasa la misma cantidad de corriente (e− ), por lo que en ambas cubas se depositará el mismo número de equivalentes, no teniendo que coincidir las masas de los metales depositadas, ya que estas además dependen de la masa equivalente, característica de cada elemento y del número de e− que se transfieren. eq174'0 Eq C96500 s4200A4 F tI F Q grEqºn = ⋅ = ⋅ ==− Para el Cu: ( ) ( ) ( ) ( ) ( ) ( )Cuv CuM Cum CugrEq Cum CugrEqºn = − =− ( ) ( ) gr5'5Cum eq gr 2 5'63 Cum eq174'0 =       = Para el Al: ( ) ( ) ( ) ( ) ( ) ( )Alv AlM Alm AlgrEq Alm AlgrEqºn = − =− ( ) ( ) gr6'1Alm eq gr 3 27 Alm eq174'0 =       =
  3. 3. - 3 - 3. Se hace la electrólisis del NaCl en disolución acuosa utilizando la corriente de 5 A durante 30 minutos: Datos: Eº Na+ /Na = −2,71 V; Eº Cl2/ 2Cl− = 1,36 V a) ¿Qué volúmenes de gases se obtienen en el ánodo y en el cátodo a 1 atm y 25 ºC? Solución. Por tratarse de una disolución acuosa y tener el sodio un potencial de reducción inferior a −0’41 v (Potencial de reducción del hidrogeno en disoluciones neutras) en el cátodo de la cuba se reducirán los protones presentes en el medio, debidos a la autoinización del agua, a hidrógeno, en el ánodo se oxidan los iones Cl− a cloro molecular (Cl2). • Cátodo: ( )gHe2H2 2→+ −+ • Ánodo: ( )gCle2Cl2 2→− −− El volumen de gases producidos se calculan a partir del número de moles de hidrógeno reducidos en el cátodo y el número de moles de cloro oxidados en el ánodo, mediante las leyes de Faraday. F Q grEqºn =− • vnv M m v M m P m gr-Eqºn Eq ⋅==== Donde n es el número de moles y v la valencia redox. • Q = I·t F tI vn ⋅ =⋅ Cátodo: ( ) ( ) ( ) ( ) mol047'0 mol Eq2 Eq C96500 s6030A5 HvF tI Hn F tI HvHn doxRe2 2doxRe22 = ⋅ ×⋅ = ⋅ ⋅ =⇒ ⋅ =⋅ Ánodo: ( ) ( ) ( ) ( ) mol047'0 mol Eq2 Eq C96500 s6030A5 ClvF tI Cln F tI ClvCln doxRe2 2doxRe22 = ⋅ ×⋅ = ⋅ ⋅ =⇒ ⋅ =⋅ Conocidos los moles, el volumen se calcula mediante la ecuación de gases ideales. ( ) ( ) L14,1 atm1 K298 Kmol Latm 0'082mol047'0 P TRn ClVHV 22 = ⋅ ⋅ ⋅ ⋅ = ⋅⋅ == b) ¿Cómo tendría que estar el electrolito en la celda `para que se depositase sodio y qué diferencia de potencial habría que aplicar? Solución. Para que los iones metálicos, cuyos potenciales de reducción sean inferiores a −0’41 v se reduzcan en el cátodo de una cuba electrolítica, deberán estar fundidos, nunca en disolución acuosa ya que en este último caso se reducirán los protones procedentes de la auto ionización del agua presente en la disolución, antes que los iones metálicos. La mínima diferencia de potencial que habrá que aplicar, sin tener en cuenta efectos de sobre tensión, será igual o mayor que el potencial del proceso en valor absoluto. • Cátodo (Reducción). v71'2EºNae1Na −=→+ −+ • Ánodo (Oxidación). v36'1EºCle2Cl2 2 =→− −− Reacción total: 2ClNa2Cl2Na2 +→+ −+ ( ) v07'436'141'2EEE o Ánodo o Cátodo o T −=−−=−= 4’07 v es el mínimo potencial teórico necesario para poder efectuar la electrolisis en condiciones de reversibilidad termodinámica, es decir, de forma infinitamente lenta y sin que pase corriente a través de la cuba. En la práctica la electrolisis se verifica de una forma irreversible, aplicando entre los electrodos una diferencia de potencial algo superior a la teórica.
  4. 4. - 4 - 4. Para obtener 3,08 g de un metal M por electrólisis, se pasa una corriente de 1'3A a través de una disolución de MCl2 durante 2 horas. Datos: Constante de Faraday F = 96500 C·eq−1 ; R = 0,082 atm·L·mol−1 ·K−1 . Calcule: a) La masa atómica del metal. Solución. Conocida la cantidad de corriente que atraviesa la cuba (Q=I·t), se puede calcular el número de equivalentes gramo que se han depositado según las leyes de Faraday. eq097'0 eq C96500 s60602A3'1 F tI F Q grEqºn = ××⋅ = ⋅ ==− La sal MCl2 nos informa de que trata de un metal bivalente. ( ) ( )aqCl2aqMMCl 2OH 2 2 −+ + → Por tratarse de un metal bivalente, en el cátodo se habrá producido la reacción: Me2M2 →+ −+ Siendo por tanto su peso equivalente       = v M Peq Conocido el número de equivalentes que se han depositado y la valencia del metal se calcula la masa atómica del metal. mol gr5'63 mol eq2 eq0'097 gr08'3 v grEqºn m M v M m P m gr-Eqºn Eq =⋅=⋅ − =⇒== Masa atómica que corresponde al cobre. b) Los litros de cloro producidos a 1 atmósfera de presión y 273 K. Solución. El numero de equivalentes gramo que se depositan en el cátodo (se reducen) son el mimo que se liberan en el ánodo (se oxidan). 2Cle2Cl2 →− −− ( ) ( ) ( ) ( ) ( ) ( ) vCln v ClM Clm ClP Clm Clgr-Eqºn 2 2 2 2Eq 2 2 ⋅=== ( ) ( ) mol048'0 2 0'097 v Clgr-Eqºn Cln 2 2 === Moles que en condiciones normales (T =273 K, P =1atm) ocupan un volumen de: L1'086mol048'0 mol L4'22n4'22V .N.C =⋅=⋅= 5. Se tiene una disolución acuosa de sulfato de cobre (II). Datos.- Masa atómica del Cu = 63,5, NA = 6,023 · 1023 átomos/mol; F = 96500 culombios/Eq. a. Calcule la intensidad de corriente que se necesita pasar a través de la disolución para depositar 5 g de cobre en 30 minutos. Solución. Según las leyes de Faraday: F Q grEqºn =− Donde: Q = I · t v M m grEq m grEqºn = − =−
  5. 5. - 5 - Siendo v la valencia redox (número de electrones que se transfieren en la semireacción). El cobre se deposita en el cátodo según la semireacción: Cue2Cu2 →+ −+ v = 2 Sustituyendo en las leyes de Faraday: ( ) ( ) ( ) ( ) A4'8 s C4'8 s6030 mol gr5'63 Eq C96500 mol Eq2gr5 tCuM FvCum I F tI v CuM Cum Cu Cu == ×⋅ ⋅⋅ = ⋅ ⋅⋅ =⇒ ⋅ = b. ¿Cuántos átomos de cobre se habrán depositado? Solución. La forma más sencilla de resolverlo es calcular a partir de la masa de cobre depositada, el número de moles y conocidos estos, calcular el número de átomos mediante el número de Avogadro. ( ) ( ) ( ) mol079'0 mol gr63'5 gr5 CuM Cum Cun === ( ) at107'4 mol at1002'6mol079'0NCunAtºn 2223 A ⋅=×⋅=⋅= 6. Dos celdas electrolíticas que contienen nitrato de plata(I) y sulfato de cobre (II), respectivamente, están montadas en serie. Halle los gramos de cobre que se depositarán en la segunda celda, si en la primera se depositan 2 gramos de plata. DATOS: Masa atómicas: Ag = 108; Cu = 63’5 Solución. Por dos celdas electrolíticas conectadas en serie, como muestra la figura, pasa la misma cantidad de corriente, y por tanto según las leyes de Faraday       =− F Q grEqºn en las dos se depositaran ó se desprenderán el mismo número de equivalentes. • Cátodo I: 1vAgeAg =→+ −+ • Cátodo II: 2vCue2Cu2 =→+ −+ ( ) ( )III CugrEqºnAggrEqºn −=− ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) CuAg EqEq v CuM Cum v AgM Agm : CuP Cum AgP Agm == ( ) ( ) gr59'0Cum Eq 2 5'63 Cum Eq 1 108 gr2 ==
  6. 6. - 6 - 7. En la electrólisis de una disolución acuosa que contiene sulfato de zinc y sulfato de cadmio, se deposita todo zinc y el cadmio, para lo cual se hace pasar una corriente de 10 amperios durante 2 horas, obteniéndose una mezcla de ambos metales de 35’44 g. Calcule el porcentaje en peso de zinc en la mezcla metálica. DATOS: Masas atómicas: Cd = 112’4 Zn = 65’4 Solución. El número total de equivalentes gramo que se han depositado es función únicamente de la cantidad de carga que atraviesa el sistema, según las leyes de Faraday. Eq75'0 Eq C96500 s60602A10 F tI F Q grEqºn = ××⋅ = ⋅ ==− Por otro lado, el número total de equivalentes depositado será la suma de los equivalentes de zinc y cadmio. ( ) ( )CdEqZnEqEqT += El zinc y el cadmio se depositan según las semireacciones de reducción: Zne2Zn2 →+ −+ Cde2Cd2 →+ −+ ( ) ( ) ( ) ( ) CdZn T v CdM Cdm v ZnM Znm Eq += Si denominamos x a la masa de zinc, 35’44 − x será la masa de cadmio, sustituyendo en la igualdad anterior se obtiene una ecuación de primer grado. 2 4'112 x44'35 2 4'65 x 75'0 − += 265 x44'35 723 x 75'0 ′ − + ′ = ( )x44'352'56x7'322'567'3275'0 −+=⋅⋅ 1'26x = El porcentaje en peso de zinc en la mezcla es del 26’1 %. 8. Calcule la cantidad de aluminio que podrá obtenerse por electrólisis de una sal fundida de aluminio (III), utilizando una intensidad de 1000 A, durante una hora, si el rendimiento es del 80%. Datos: Masa atómica: Al = 27; F (Faraday) = 96500C·eq−1 Solución. Según las leyes de Faraday, las masas de las distintas sustancias liberadas en la electrolisis son inversamente proporcionales a los pesos equivalentes de las sustancias y directamente proporcionales a la cantidad de carga que atraviesa la cuba según la expresión: F Q grEqºn =− Donde: • EqP m grEqºn =− siendo v M PEq = , donde M es la masa atómica y v la valencia red-ox (nº de e− que se transfieren en la semirreacción). • Q, cantidad de carga que atraviesa el sistema. Q = I · t • F, constante de Faraday (F = 96500 C/Eq) La reducción del Al3+ se llevará a cabo en el cátodo de la cuba según la reacción: ( )      =→+ −+ Eq gr 3 27 AlPAle3Al Eq 3
  7. 7. - 7 - Aplicando las leyes de Faraday ( ) ( ) ( ) F tI AlP Alm F Q AlgrEqºn Eq ⋅ ==− Sustituyendo por los valores y despejando: ( ) ( ) gr8'335Alm Eq C96500 s3600 s C A1000 Eq gr9 Alm = ⋅      = Los 335’8 gramos es la masa teórica de aluminio que se podría obtener si el rendimiento fuese del 100%. Con un rendimiento del 80%, la masa real de aluminio será: ( ) gr6'268 100 80 8'335 100 R mm100 m m %R TeóricaalRe Teórica alRe =⋅=⋅=⇒⋅= 9. Septiembre 2000. En la electrólisis de una disolución acuosa de cloruro de potasio se obtiene hidróxido de potasio, hidrógeno molecular y cloro molecular. Determine: a- El proceso que tiene lugar en cada electrodo, señalando al mismo tiempo su naturaleza anódica o catódica. ¿Por qué se forma hidróxido de potasio? b- ¿Qué volumen (en L) de hidrógeno y cloro gaseosos, medidos a 0°C y 1 atm, se obtendrán al utilizar una corriente de 25 amperios durante 2 horas? DATOS:1 F = 96500C·eq−1 ; R = 0’082 atm·L·mol-1 ·K-1 ; Masas atómicas: Cl = 35’5; H = 1 Solución. a. • Cátodo (Reducción): 2He2H2 →+ −+ • Ánodo (Oxidación): 2Cle2Cl2 →− −− Al eliminarse protones (H+ ) en la reacción catódica, el equilibrio de ionización del agua se desplaza hacia la derecha, aumentando la concentración del oxidrilos (OH− ), que junto con los cationes potasio (K+ ) procedentes de la disociación de la sal (KCl), forman una disolución de hidróxido potásico totalmente disociada, debido a su fortaleza como base. b. Para calcular el volumen de un gas formado en un proceso electrolítico es necesario conocer el número de moles formados. El número de moles formados se calcula mediante las leyes de Faraday. F Q vn: vnv M m v M m P m grEqºn F Q grEqºn Eq =⋅        ⋅=⋅===− =− La valencia Red-ox, tanto para el hidrógeno molecular como para el cloro molecular, es la misma v = 2 (nº de e− que se transfieren en la semirreacción por mol de compuesto formado), Q es la cantidad de corriente que atraviesa el sistema, por lo tanto, los moles formado de hidrógeno y cloro molecular también será los mismos.
  8. 8. - 8 - ( ) ( ) ( ) mol87'1 Eq C96500 mol Eq2 s36002 s CA25 Fv tI Fv Q ClnHn 22 = ⋅ ×⋅ = ⋅ ⋅ = ⋅ == ( ) mol3'74mol87'12Hn2n 2T =⋅== Conocido el número de moles gaseosos, con la ecuación de gases ideales se calcula el volumen. P TRn VTRnVP ⋅⋅ =⋅⋅=⋅ L5'83 atm1 K273 Kmol Latm 082'0mol74'3 V = ⋅⋅ = 10. Septiembre 2001. Para depositar en uno de los electrodos de una célula electrolítica el níquel contenido en 500 mL de una disolución 0,5 M de sulfato de níquel(II), se hace pasar por ella una corriente de 10 A durante un cierto tiempo. Calcule: a) El tiempo necesario para realizar la operación anterior, teniendo en cuenta que el rendimiento de la electrolisis es del 80%. b) Si la cantidad de electricidad empleada en la electrolisis anterior, se utilizara para electrolizar agua ¿qué cantidades de oxígeno e hidrógeno se obtendrían, si el rendimiento de la operación es también del 80% ? DATOS: 1 F = 96500C·eq−1 . Masas atómicas: Ni = 58,7 ; O = 16 ; H = 1 Solución. a. El níquel contenido en la cuba se deposita en el cátodo mediante un proceso de reducción, según la semirreacción: ( ) mol Eq2NivNie2Ni2 =→+ −+ Según las leyes de Faraday, el número de equivalentes de níquel depositados es directamente proporcional a la cantidad de carga que atraviesa el sistema. F Q grEqºn =− • Q = I · t • ( ) ( ) vLVM LVMn disolución vnv M m vM m P m gr-Eqºn Eq ⋅⋅=       ⋅= =⋅==== Sustituyendo ( ) ( ) I FvLVM t F tI vLVM ⋅⋅⋅ = ⋅ =⋅⋅ ( ) s4825 s CA10 Eq C96500 mol Eq2L10500 L mol5'0 t 3 = ⋅⋅×⋅ = − El tiempo calculado es el teórico, es decir si el rendimiento fuera del 100%. Si el rendimiento es del 80% y queremos que se sigua produciendo la misma cantidad de níquel, el 80% del tiempo real debe ser igual al tiempo teórico. 2304h1s6032 10080 s4825 %80 t ttt%80 T RTR ′′′<>≅===
  9. 9. - 9 - b. Según la 2ª ley de Faraday, si la cantidad de electricidad empleada en la electrolisis del agua es la misma que la utilizada en la del níquel, el número de equivalentes gramos depositados o liberados serán igual. ( ) ( ) ( )22 Ogr-EqnºHgr-EqºnNigr-Eqºn == La descomposición del agua mediante un proceso electrolítico se realiza mediante las siguientes semireacciones: • Cátodo (Reducción): ( ) mol eq2HvHe2H2 22 =→+ −+ • Ánodo(Oxidación): ( ) mol eq4OvOHOe4OH4 222 =+→− −− En el apartado a, se ha establecido que el nº Eq-gr = n · v ( ) ( ) ( ) ( ) ( ) ( )2222 22 OvOnHvHnNivNin ⋅=⋅=⋅ ++ Teniendo en cuenta que el Ni2+ se encuentra en disolución, se pueden establecer las siguientes igualdades: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 222 222 222 2 222 222 222 Ov NivNiVNiM OnOvOnNivNiVNiM Hv NivNiVNiM HnHvHnNivNiVNiM +++ +++ +++ +++ ⋅⋅ =⋅=⋅⋅ ⋅⋅ =⋅=⋅⋅ Sustituyendo por los valores. ( ) ( ) mol125'0 mol eq4 mol eq2L10500 L mol5'0 On mol25'0 mol eq2 mol eq2L10500 L mol5'0 Hn 3 2 3 2 = ⋅×⋅ = = ⋅×⋅ = − − Conocidos los moles de hidrógeno y oxígeno obtenidos, se calculas sus masas. ( ) ( ) ( ) ( ) ( ) ( ) gr4 mol gr23mol25'0OMOnOm gr5'0 mol gr2mol25'0HMHnHm 222 222 =⋅=⋅= =⋅=⋅=
  10. 10. - 10 - 11. Junio 2001. Se conectan dos cubas electrolíticas en serie. En la primera se coloca una disolución de ácido sulfúrico y en la segunda, una disolución de nitrato de cobre (II). Después del paso de una determinada cantidad de electricidad, en la primera cuba se recogen 600 ml de hidrógeno molecular a 27ºC y 1 atm de presión. a) Las semirreacciones que tienen lugar en los electrodos de ambas cubas. b) El peso de cobre depositado en la segunda cuba. Datos: Faraday = 96500C·eq−1 ; R = 0.082 atml/molK ; Masas atómicas: Cu = 63.5 ; H = 1. Solución. a) En el cátodo de la primera cuba se reducirán los protones (H+ ) a hidrógeno molecular (H2), en el ánodo se oxidarán los iones hidróxilos (OH− ), presentes por la autoionización del agua, a oxígeno molecular (O2), ya que el otro anión presente (SO4 2− ) está en su máximo estado de oxidación (S6+ ) y no puede seguir oxidándose. • Cuba I:     +→− →+ −− −+ OH2Oe4OH4:IIÁnodo He2H2:ICátodo 22 2 • Cuba II:     +→− →+ −− −+ OH2Oe4OH4:IIÁnodo Cue2Cu:ICátodo 22 2 b) Según las leyes de Faraday, el número Eq-gr liberados ó depósitos en la electrólisis es función de la cantidad de corriente que atraviesa la cuba. Si dos cubas se conectan en serie, por las dos pasa la misma cantidad de corriente y por tanto en ambas se liberan o depositan el mismo número de equivalente. ( ) ( )III2 CugEqºnHgrEqºn −=− La definición de grEqºn − es: ( ) ( ) ( ) ( )CuP Cum HP Hm Eq2Eq 2 = ⋅ Teniendo en cuenta que la cantidad de hidrogeno obtenida en la electrolisis se calcula a partir del volumen, temperatura y presión a la que es recogido, conviene expresar el número de Eq-gr de hidrógeno en función del V, T y P mediante la ecuación de gases ideales a partir den número de moles (n(H2)). ( ) ( ) ( ) ( ) ( )CuP Cum Hv HM Hm Eq 2 2 2 = ( ) ( ) ( ) ( ) ( )CuP Cum Hv HM Hm Eq 2 2 2 =⋅ ( ) ( ) ( ) ( )CuP Cum HvHn Eq 22 ⋅ ( ) ( ) ( )CuP Cum Hv RT VP Eq 2 HH 22 =⋅ ⋅ ( ) ( ) ( )CuPHv RT VP Cum Eq2 HH 22 ⋅⋅ ⋅ = La valencia se obtiene de las semireacciones, siendo el número de e− que se transfieren por mol de compuesto. ( ) ( ) Eq gr75'31 mol Eq2 mol gr5'63 v M CuPCue2Cu mol Eq2HvHe2H2 Eq 2 22 ===→+ =→+ −+ −+
  11. 11. - 11 - Sustituyendo por los valores: ( ) gr55'1 Eq gr75'31 mol Eq2 K300 Kmol Latm 082'0 L10600atm1 Cum 3 =⋅⋅ ⋅ ×⋅ = − 12. Septiembre 1999. Se dispone de dos cubas electrolíticas conectadas en serie con disoluciones de nitrato de plata y de ácido sulfúrico, respectivamente. Se hace pasar corriente de forma que en la primera se depositan 0’2325 gramos de plata. Calcule el volumen de hidrogeno medido a 25°C y 1 atmósfera de presión, que se desprenderá en la segunda cuba. Datos: Masas atómicas; Ag = 108; H = 1 1 Faraday = 96500 C·eq−1 Solución. Por estar conectadas en serie por ambas cubas pasa la misma cantidad de corriente y por tanto en ambas se depositan o liberan el mismo número de Eq-gr. En el cátodo de la 1ª cuba se reducen los cationes Ag+ a plata metálica (Ag), en la 2ª cuba son los protones (H+ ) provenientes de la disociación de ácido sulfúrico los que se reducen en el cátodo a hidrógeno molecular (H2). • Cuba I: Cátodo (Reducción) ( ) ( ) Eq gr108 1 108 AgP1AgvAge1Ag Eq ===→+ −+ • Cuba II: Cátodo (Reducción) ( ) 2HvHe2H2 22 =→+ −+ ( ) ( )II2I HgEqºnAggrEqºn −=− ( ) ( ) ( ) ( )2Eq 2 Eq HP Hm AgP Agm ⋅ = ( ) ( ) ( ) ( ) ( )2 2 2 Eq Hv HM Hm AgP Agm = ( ) ( ) ( ) ( ) ( )2 2 2 Eq Hv HM Hm AgP Agm ⋅= ( ) ( ) ( ) ( )22 Eq HvHn AgP Agm ⋅= ( ) ( ) ( )2 HH Eq Hv RT VP AgP Agm 22 ⋅ ⋅ = ( ) ( ) ( )2HEq H HvP RT AgP Agm V 2 2 ⋅ ⋅= Sustituyendo por los valores del enunciado: mL26L026'0 mol Eq2atm1 K298 Kmol Latm 082'0 Eq gr108 gr2325'0 V 2H = ⋅ ⋅ ⋅ ⋅ ⋅=
  12. 12. - 12 - 13. Junio 1999. Se electroliza una disolución acuosa de sulfato de cobre(II) durante 30 minutos, utilizando electrodos inertes, sobre los que se aplica una corriente de intensidad 5 amperios. En dicha electrólisis se deposita un metal y se desprende un gas. Escriba: a) Semirreacción catódica b) Semirreacción anódica Calcule: c) Gramos que se obtienen del metal depositado d) Volumen de gas que se desprende en las condiciones de trabajo (Temperatura = 25ºC y P = 1 atm). DATOS: Masas atómicas, O = 16; Cu = 63.5; F = 96500C·eq−1 ; R = 0.082 atm·L.K−1 .mol−1 Solución. a) Semirreacción catódica: Reducción ( ) Eq gr75'31 2 5'63 v M CuPCue2Cu Eq 2 ===→+ −+ b) Semirreacción anódica: Oxidación. De los aniones presentes en la cuba ( )−− OH,SO2 4 solo puede oxidarse el OH− , ya que el ión sulfato esta en su máximo estado de oxidación. ( ) Eq gr8 4 32 v M OPOH2Oe4OH4 2Eq22 ===+→− −− c) Según las leyes de Faraday: ( ) F Q CugrEqºn =− Donde: ( ) ( ) ( )        = ⋅= =− Eq C96500F tIQ CuP Cum CugrEqºn Eq ( ) ( ) ( ) ( ) F tICuP Cum F tI CuP Cum Eq Eq ⋅⋅ = ⋅ = ( ) gr96'2 Eq C96500 s6030 s C A5 Eq gr75'31 Cum = ×⋅      ⋅ = d) d) ( ) F Q OgrEqºn 2 =− ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )222 2 2 2 2 2 2Eq 2 2 OvOnOv OM Om Ov OM Om OP Om OgrEqºn ⋅====− Sustituyendo: ( ) ( ) ( ) ( )2 222 OvF tI On F Q OvOn ⋅ ⋅ ==⋅
  13. 13. - 13 - ( ) mol023'0 mol Eq4 Eq C96500 s6030 s C A5 On 2 ⋅ ×⋅      = Mediante la ecuación de gases ideales y con las condiciones a las que se recoge el oxígeno se calcula su volumen. ( ) mL570L570'0 atm1 K298 Kmol Latm 0'082mol023'0 P TROn V 2 O2 == ⋅ ⋅ ⋅ ⋅ = ⋅⋅ = 14. Junio 1998. Se electroliza una disolución de ácido sulfúrico, usando electrodos inertes, durante un periodo de 20 minutos. El hidrógeno producido se recoge sobre agua a una presión total de 750 mm de Hg y a una temperatura de 27 ºC, obteniéndose en estas condiciones 200 mL. a) Indique en que electrodo se desprende él hidrogeno., cuál es la reacción correspondiente y cuál es el equivalente electroquímico del hidrogeno. b) Calcule la intensidad de la corriente aplicada. DATOS: F = 96500C·eq−1 ; R = 0’082 atm·L/K·mol; Presión de vapor del agua a 27 ºC = 26 mm Hg; H = 1 Solución. a) El hidrógeno se obtienen a partir de los protones presentes en la disolución debido a la disociación del ácido sulfúrico ( )+− + → H2SOSOH 4 OH 42 2 . Los protones se reducen en el cátodo a hidrógeno molecular captando electrones según la semirreacción: ( ) ( ) ( ) Eq gr1 mol Eq2 mol gr2 Hv HM HPHe2H2 2 2 2Eq2 ===→+ −+ Valencia red-ox es el número de electrones que se transfieren en la semiracción por mol de compuesto. b) La intensidad de la corriente se calcula a partir de las leyes de Faraday. F Q gr-Eqºn = Donde:      ⋅= = tIQ P m gr-Eqºn Eq F tI P m Eq ⋅ = Puesto que el hidrógeno se recoge en forma gaseosa conviene expresar la igualdad anterior en función del número de moles de hidrógeno. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) F tI Hv HM Hm : Hv HM HP F tI HP Hm 2 2 2 2 2 2Eq 2Eq 2 ⋅ =        = ⋅ = Ordenando y teniendo en cuenta que n M m = (nº de moles) ( ) ( ) ( ) ( ) ( ) F tI HvHn F tI Hv HM Hm 222 2 2 ⋅ =⋅ ⋅ = El número de moles de hidrógeno se obtiene mediante la ecuación de gases ideales, pero hay que tener en cuenta que se recoge mezclado con vapor de agua, por lo que se deberá usar la presión parcial de hidrógeno en la mezcla. Teniendo en cuenta que la presión total es la suma de la presiones parciales: Hgmm72426750PPPPPP OHHOHH 2222 =−=+=+= Conocida la presión parcial de hidrógeno se calcula el número de moles.
  14. 14. - 14 - TR VP nRTnVP 2 222 H HHH ⋅ ⋅ ==⋅ mol1074'7 J300 Kmol Latm 082'0 L10200atm 760 724 n 3 3 H2 − − ×= ⋅ ⋅ ⋅ ×⋅ = Conocidos los moles de hidrógeno calculamos la intensidad. ( ) ( ) ( ) ( ) t FHvHn I F tI HvHn 22 22 ⋅⋅ = ⋅ =⋅ ( )A s C 25'1 s6020 Eq C96500 mol Eq2mol1074'7 I 3 = × ⋅⋅× = − 15. Junio 1997. Se dispone de una disolución acuosa de sulfato de cobre (II) de concentración 4×10−2 M. Calcule el tiempo necesario para electrolizar completamente el cobre contenido en 250 ml de dicha disolución al pasar una corriente de 1’2 amperios, si el rendimiento del proceso es del 90%. DATOS: Masas atómicas: O = 16,0; S = 32,0; Cu = 63,5 Constante de Faraday: 96.500C·eq−1 Solución. El cobre se reduce en el cátodo según la siguiente semireacción: ( ) Eq gr75'31 2 5'63 v M CuPCue2Cu 2 Eq 2 ===→+ +−+ Según las leyes de Faraday: F Q gr-Eqºn = Donde:      ⋅= = tIQ P m gr-Eqºn Eq F tI P m Eq ⋅ = (1) Para calcular la masa de Cu2+ se tiene en cuenta que el sulfato de cobre (II), como sal que es, está totalmente disociado según: −+ +→+ 2 4 2 24 SOCuOHCuSO Por lo tanto M104CuSOCu 2 4 2 −+ ×== . Conocida la concentración de Cu2+ se calcula su masa. ( ) mol01'0L10250 L mol104VMCun 322 =×⋅×=⋅= −−+ ( ) ( ) ( ) gr635'0 mol gr63'5mol01'0CuMCunCum 222 =⋅=⋅= +++ Sustituyendo los datos en la expresión (1), se calcula el tiempo teórico. s3'1608 s J A2'1 Eq gr31'75 Eq C96500gr635'0 IP Fm t F tI P m EqEq =       ⋅ ⋅ = ⋅ ⋅ = ⋅ = Este es el tiempo teórico, para calcular el tiempo real hay que tener en cuenta el rendimiento del proceso. 100 t t R R T ⋅= s2680100 60 1608 100 R t t T R =⋅=⋅=
  15. 15. - 15 - 16. Junio 1997. Para platear por ambas cara con 0’1 mm. de espesor una medalla de 2 cm. de diámetro y 0’4 mm. de altura, se efectúa una electrólisis de una disolución de nitrato de plata, haciendo actuar la medalla como cátodo y aplicando una corriente de 10 amperios. Calcule el tiempo necesario para llevar a cabo dicho plateado. DATOS: Masa atómica de la Ag =107’9 Densidad de la plata = 10’5 g/cm3 F = 96.500C·eq−1 Solución. El problema tiene dos partes claramente distintas. Primero habrá que calcular la masa de plata necesaria para recubrir la moneda y a continuación el tiempo necesario para llevar a cabo el proceso electrolítico. El calculo de la masa de plata lo haremos mediante la densidad de la plata y el volumen de plata necesario. El volumen de plata se puede calcular teniendo en cuenta que una moneda es un cilindro, y por tanto el volumen de plata será el volumen de la moneda recubierta menos el volumen de la moneda. Si denominados V al volumen de la moneda plateada y Vm al de la moneda: mAg VVV −= El volumen de un cilindro es: hRπV 2 ⋅= El radio de la moneda se obtiene dividiendo el diámetro por 2. R = 1 cm Si nos fijamos en la figura ( ) ( ) m 2 mm m 2 m hRπV e2heRπV ⋅= +⋅+= ( ) ( ) ( ) ( )[ ]m 2 mm 2 mm 2 mm 2 mAg hRe2heRπhRπe2heRπV ⋅−+⋅+=⋅−+⋅+= Sustituyendo por la dimensiones del enunciado en cm: ( ) ( )[ ] 322 Ag cm0666'004'0101'0204'001'01πV =⋅−⋅+⋅+= Conocido el volumen de plata se calcula la masa con la densidad. gr6993'0 cm gr5'10cm0666'0dVm 3 3 AgAgAg =⋅=⋅= Una vez conocida la masa de plata, mediante las leyes de la electrólisis calculamos el tiempo necesario. La plata se obtiene mediante un proceso de reducción: ( ) ( )−−+ ==→+ enAgn: 1 1 e Ag :Age1Ag - ( ) ( ) F tI AgM Agm ⋅ = ( ) ( ) s5,62 s J A10 Eq gr107'9 Eq C96500gr6993'0 IAgM FAgm t =       ⋅ ⋅ = ⋅ ⋅ =
  16. 16. - 16 - 17. Una disolución de sulfato de cobre (II), que contiene 0,400 g de ión Cu2+ ,se electroliza entre electrodos de platino hasta que la totalidad del cobre queda depositado en el cátodo; se continua después la electrolisis siete minutos más. Durante la electrolisis el volumen de la disolución se mantiene 100 cm3 , y la intensidad de la corriente en 1’20 A durante todo el proceso. Suponiendo un rendimiento del 100%. a. Hallar el tiempo necesario para el depósito completo del cobre. b. Que ocurre en el ánodo mientras dura la deposición de cobre, y lo que sucede después, en los siete segundos siguientes, en cada uno de los electrodos. c. Determinar el volumen total de gases, medidos en condiciones normales, que se desprenden en los electrodos durante toda la electrolisis. d. Hallar el pH final de la disolución, suponiendo que la disociación del ácido sulfúrico sea total. Solución. a) El cobre se deposita en el cátodo mediante un proceso de reducción. ( ) Eq gr75'31 2 5'63 CuPCue2Cu Eq 2 ==→+ −+ El tiempo necesario para llevar a cabo todo el depósito del cobre se obtiene mediante las leyes de Faraday. F Q gr-Eqºn = Donde:      ⋅= = tIQ P m gr-Eqºn Eq F tI P m Eq ⋅ = s53min16s1013 s C A2'1 Eq gr31'75 Eq C96500gr400'0 IP Fm t Eq ==       ⋅ ⋅ = ⋅ ⋅ = b) Durante el depósito del cobre en el cátodo, en el ánodo se produce la oxidación de los hidroxilos, procedentes de la autoionización del agua, a oxigeno molecular, debido a que el anión sulfato no puede oxidarse por estar el azufre en su máximo estado de oxidación. Ánodo: ( ) Eq gr8 4 32 v M OPOH2Oe4OH4 2Eq22 ===+→− −− Una vez concluido el depósito del cobre, en el cátodo empieza a desprenderse hidrógeno molecular debido a la reducción de los protones presentes en la disolución. ( ) Eq gr1 2 2 v M HPHe2H2 2Eq2 ===→+ −+ En el ánodo se sigue desprendiendo oxigeno. c) En el cátodo se desprende hidrógeno durante 7 min = 420 s. El número de moles de hidrógeno se puede calcular mediante las leyes de Faraday. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) F tI Hv HM Hm : Hv HM HP F tI HP Hm 2 2 2 2 2 2Eq 2Eq 2 ⋅ =        = ⋅ = Ordenando y teniendo en cuenta que n M m = (nº de moles) ( ) ( ) ( ) ( ) ( ) F tI HvHn F tI Hv HM Hm 222 2 2 ⋅ =⋅ ⋅ =
  17. 17. - 17 - ( ) ( ) 2 3 2 2 Hdemoles102'6 mol Eq2 Eq C96500 s420 s C A1'2 HvF tI Hn − ×= ⋅ ⋅      = ⋅ ⋅ = En el ánodo se desprende oxígeno durante todo el tiempo: s14334201013tT =+= El número de moles de oxígeno desprendido se obtiene igual que los de hidrógeno. ( ) ( ) 2 3 2 T 2 Odemoles104'5 mol Eq4 Eq C96500 s1433 s C A1'2 OvF tI On − ×= ⋅ ⋅      = ⋅ ⋅ = El número de moles gaseosos desprendidos en todo el proceso será la suma de los dos. ( ) gaseososmoles101'7105'4106'2nngn 333 OHT 22 −−− ×=×+×=+= En condiciones normales, el volumen que ocupan es: ( ).n.cL159,0 mol L22,4moles101'7V 3 =⋅×= − d) Al final de la electrolisis tendremos una disolución acuosa de ácido sulfúrico, que , de acuerdo con el enunciado del problema, vamos a suponer totalmente disociado: +− +→+ OH2SOOH2SOH 3 2 4242 La concentración de catión hidronio en dicha disolución será el doble que la de ión sulfato, y esta será igual que la de ión Cu2+ inicial por estequiometria: ( ) ( ) ( )       = × =⋅=== − + + +−+ L mol M122'0 10100 5'65 400'0 2 LV CuM Cum 2Cu2SO2OH 3 sd 2 o 2 43 Conocida la concentración de protones se calcula el pH de la disolución: [ ] 0,90,12logOHlogpH 3 =−=−= +

×