Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Successfully reported this slideshow.

Like this presentation? Why not share!

- PROLOG: Arithmetic Operations In Pr... by DataminingTools Inc 13802 views
- Dhammakaya in Thailand by hanwhee 767 views
- Facebook Privacy Settings Tutorial ... by cwjun94 497 views
- College of Agriculture Facebook Tut... by amc0039 273 views
- Twitter Tutorial: Basics and Best P... by Allison Barker 1339 views
- Facebook Timeline Tutorial by Leapdog by Leapdog Marketing... 504 views

2,209 views

Published on

PROLOG: Matching And Proof Search In Prolog

Published in:
Technology

No Downloads

Total views

2,209

On SlideShare

0

From Embeds

0

Number of Embeds

23

Shares

0

Downloads

0

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Matching and Proof search in Prolog<br />
- 2. OVERVIEW<br />Matching<br />Occurs check<br />Programming with matching<br />Proof search<br />Examples<br />
- 3. MATCHING<br />The basic idea for a Two terms match is:<br />The two terms are equal or if they contain variables that can be instantiated in such a way that the resulting terms are equal.<br />If term1 and term2 are constants, then term1 and term2 match if and only if they are the same atom, or the same number.<br />
- 4. MATCHING<br />If term1 is a variable and term2 is any type of term, then term1 and term2 match and term1 is instantiated to term2. <br />Similarly, if term2 is a variable and term1 is any type of term, then term1 and term2 match, and term2 is instantiated to term1.<br />If term1 and term2 are complex terms, then they match if and only if:<br /><ul><li>a. They have the same functor and arity.
- 5. b. All their corresponding arguments match
- 6. c. and the variable instantiations are compatible.</li></ul>Two terms match if and only if it follows from the previous three clauses that they match.<br />
- 7. The occurs check<br />Consider the following query:<br />father(X) = X.<br /><ul><li>A standard unification algorithm would say: No, these don't match.</li></ul>Pick any term and instantiate X to the term you picked. <br />For ex:<br />if you instantiate X to father(father(butch)), the left hand side becomes father(father(father(butch))), and the right hand side becomes father(father(butch)). Obviously these don't match.<br />SICStus Prolog or SWI returns the answer like:<br />X = father(father(father(father(father(father(...))))))))))<br />The dots are indicating that there is an infinite nesting of father functors.<br />
- 8. Programming with matching<br />Matching plays a key role in Prolog proof search and this alone makes it vital.<br />Matching can then be used to pull out the information you want.<br />Ex: The following two line knowledge base<br />defines two predicates, namely vertical/2 and horizontal/2,<br />which specify what it means for a line to be vertical or<br />horizontal respectively.<br />vertical(line(point(X,Y),point(X,Z))).<br />horizontal(line(point(X,Y),point(Z,Y))).<br />
- 9. The definition of vertical/1 simply says that a line that goes between two points that have the same x-coordinate is vertical.<br />The definition of vertical/1 simply says that a line that goes between two points that have the same x-coordinate is vertical.<br />Ex:<br /> vertical(line(point(1,1),point(1,3))).<br />yes<br />vertical(line(point(1,1),point(3,2))).<br />no<br />
- 10. Proof search<br />Consider the following Knowledge Base:<br />f(a).<br />f(b).<br />g(a).<br />g(b).<br />h(b).<br />k(X) :- f(X),g(X),h(X).<br />On posing the query k(X).<br /> Prolog returns k(b)<br />
- 11. Proof search<br />Prolog reads the knowledge base, and tries to match k(X) with either a fact, or the head of a rule.<br />It searches the knowledge base top to bottom, and carries out the matching, if it can, at the first place possible. <br />Here there is only one possibility, it must match k(X) to the head of the rule:<br />k(X) :- f(X),g(X),h(X).<br />
- 12. Examples:<br />the original query now reads k(_G348) and Prolog knows that is:<br />k(_G348) :- f(_G348),g(_G348),h(_G348).<br />The query says: `I want to find an individual that has property k'.<br />The rule says,`an individual has property k if it has properties f, g, and h'.<br />So if Prolog can<br />find an individual with properties f, g, and h, it will have satisfied the original query. So Prolog<br />replaces the original query with the following list of goals:<br />f(_G348),g(_G348),h(_G348).<br />
- 13. Graphical representation<br />X= _G348<br />K(x)<br />f(_G348), g(_G348), h(_G348) <br />
- 14. Visit more self help tutorials<br />Pick a tutorial of your choice and browse through it at your own pace.<br />The tutorials section is free, self-guiding and will not involve any additional support.<br />Visit us at www.dataminingtools.net<br />

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment