SMX Splunk Single Customer View


Published on

The presentation discusses an innovative and cost-effective way to build a single customer view.

Published in: Technology
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

SMX Splunk Single Customer View

  1. 1. >  Single  Customer  View  <   Splunk:  Innova-ve  and  cost  effec-ve   way  to  build  a  single  customer  view  
  2. 2. Twi4er  @datalicious  April  2012   ©  Datalicious  Pty  Ltd   2  
  3. 3. >  Short  but  sharp  history  §  Datalicious  was  founded  in  late  2007  §  Strong  Omniture  web  analy-cs  history  §  Official  Omniture  &  Google  Analy-cs  partner  §  Now  360  data  agency  with  specialist  team  §  Combina-on  of  analysts  and  developers  §  Carefully  selected  best  of  breed  partners  §  Driving  industry  best  prac-ce  (ADMA)  §  Turning  data  into  ac-onable  insights  §  Execu-ng  smart  data  driven  campaigns      April  2012   ©  Datalicious  Pty  Ltd   3  
  4. 4. >  Smart  data  driven  marke?ng   “Using  data  to  widen  the  funnel”   Media  A4ribu?on  &  Modeling   Op?mise  channel  mix,  predict  sales   Targe?ng  &  Merchandising     Increase  relevance,  reduce  churn   Tes?ng  &  Op?misa?on   Remove  barriers,  drive  sales   Boos?ng  ROI  April  2012   ©  Datalicious  Pty  Ltd   4  
  5. 5. >  Clients  across  all  industries  April  2012   ©  Datalicious  Pty  Ltd   5  
  6. 6. >  Corporate  data  journey   Stage  1   Stage  2     Stage  3 Data   Insights   Ac?on   You   You     Sophis-ca-on,  Effec-veness “Leaders”   “Followers”   “Laggards”   Third  par-es  control  most  data,   Data  is  being  brought  in-­‐house,   Data  is  fully  owned  in-­‐house,   ad  hoc  repor-ng  only,  i.e.  what   shiZ  towards  insights  genera-on   advanced  predic-ve  modelling   happened?   and  data  mining,  i.e.  why  did  it   and  trigger  based  marke-ng,  i.e.   happen?   what  will  happen  and  making  it   happen!   Time,  Control  April  2012   ©  Datalicious  Pty  Ltd   6  
  7. 7. >  Importance  of  research  experience   The  consumer  decision  process  is  changing  from  linear  to  circular.   Considera?on     set  now  grows   during  (online)   (Online)  Research     research  phase   which  increases   importance  of   user  experience   during  that  phase  April  2012   ©  Datalicious  Pty  Ltd   7  
  8. 8. >  The  consumer  data  journey   To  transac?onal  data   To  reten?on  messages   From  suspect  to   prospect   To  customer   Time   Time   From  behavioural  data   From  awareness  messages  April  2012   ©  Datalicious  Pty  Ltd   9  
  9. 9. >  Seamless  end-­‐to-­‐end  experience   Affiliates,  paid,   Display     organic  search   ads   PURLs  /  Search  calls  to  ac-on   DM,  TV,  print,     Display  ad     outdoor,  etc   re-­‐targe?ng   My  Account     (re-­‐)targe?ng   Main  website   Personalised   (re-­‐)targe?ng   landing  pages   Online/offline   Email,  DM,  call   conversion   center  follow-­‐up  April  2012   ©  Datalicious  Pty  Ltd   10  
  10. 10. >  Data  and  analy?cs  architecture   1  Customer  rela-onship  management  plaborm  or     single  customer  view  across  all  touch  points   Mass  media   Call  center   Social  media   Social  media   Digital  media   CRM1   Website/apps       Acquisi?on   Up-­‐sell/reten?on       Call  center   Direct  mail   Website   MIS2   Email/SMS   Agents   Agents   2  Marke-ng  informa-on  system  or  single  source     of  truth  across  all  (campaign)  data  sources  April  2012   ©  Datalicious  Pty  Ltd   11  
  11. 11. >  Single  customer  view  is  key   Website  behavioural  data   Call  center  transac?on  data   +   The  whole  is  greater     than  the  sum  of  its  parts   Customer  profile  data  April  2012   ©  Datalicious  Pty  Ltd   12  
  12. 12. >  Transac?ons  plus  behaviours   CRM  Profile   Site  Behaviour   one-­‐off  collec-on  of  demographical  data     tracking  of  purchase  funnel  stage   +   age,  gender,  address,  etc   browsing,  checkout,  etc   customer  lifecycle  metrics  and  key  dates   tracking  of  content  preferences   profitability,  expira?on,  etc   products,  brands,  features,  etc   predic-ve  models  based  on  data  mining   tracking  of  external  campaign  responses   propensity  to  buy,  churn,  etc   search  terms,  referrers,  etc   historical  data  from  previous  transac-ons   tracking  of  internal  promo-on  responses   average  order  value,  points,  etc   emails,  internal  search,  etc   Updated  Occasionally   Updated  Con?nuously  April  2012   ©  Datalicious  Pty  Ltd   13  
  13. 13. >  Tradi?onal  single  customer  view   Website     Vendor     data   data  feed  #1   Call  center     Vendor     Reports  and   Rela?onal   data   data  feed  #2   dashboards   database   Customer     Vendor     Targeted   data   data  feed  #3   campaigns  April  2012   ©  Datalicious  Pty  Ltd   14  
  14. 14. >  Tradi?onal  single  customer  view   Challenge  #2:     Website     Data  feeds  require   Vendor     data   constant  u1   data  feed  # pdates   and  maintenance   Challenge  #1:     Rigid  database   Call  center     Vendor     Reports  and   data   data  feed  #2   schema  requires   Rela?onal   dashboards   database   extensive  planning   and  maintenance   Challenge  #3:     Increasing    number   Customer   Vendor     Targeted   data   data  feed  #3   campaigns   of  (unstructured)   data  sources  April  2012   ©  Datalicious  Pty  Ltd   15  
  15. 15. >  Splunk  single  customer  view   Website     SuperTag   Splunk  saved   behaviour   integra?on  for   searches  and   data   real-­‐?me  data   dashboards   Call  center     Splunk     Splunk  regex   Splunk  instance     transac?on   Forwarder  for   builder  and     on  dedicated     data   data  import   data  exports   AWS  server   CRM     3rd  party  data   3rd  party  data   customer     visualisa?ons     mining  and     profile  data   and  dashboards   re-­‐marke?ng  April  2012   ©  Datalicious  Pty  Ltd   16  
  16. 16. >  Data  and  analy?cs  architecture   Mass  media   Call  center   Social  media   Social  media   Digital  media   CRM   Website/apps       Acquisi?on   Up-­‐sell/reten?on       Call  center   Direct  mail   Website   MIS   Email/SMS   Agents   Agents  April  2012   ©  Datalicious  Pty  Ltd   17  
  17. 17. Website  behaviour  data  
  18. 18. >  SuperTag  tag  management   Easily  implement  and  update   Conversion   any  tag  on  any  websites  without   Tracking   or  limited  IT  involvement   Splunk   Conversion   Integra?on   De-­‐duping     De-­‐duplicate  conversions  for   CPA  deals  and  align  repor-ng   figures  across  plaborms   Web   Media   Analy?cs   SuperTag   A4ribu?on       Collect  accurate  mul--­‐channel   media  adribu-on  data  to   provide  advanced  insights   Live     Behavioral   Chat   Targe?ng     A/B  Tes?ng   Enable  advanced  features  such   Heat  Maps   as  targe-ng,  tes-ng  and  chat  to   op-mise  user  experience  April  2012   ©  Datalicious  Pty  Ltd   19  
  19. 19. Call  center  transac?on  data  
  20. 20. CRM  customer  profile  data  
  21. 21. >  Key  Splunk  advantages  §  Powerful  data  mining   –  Structured  and  unstructured  data  §  Easy  sharing  of  insights   –  Online  dashboards  and  reports  §  Short  project  dura-on   –  Quick  implementa-on  and  1st  insights  §  Integra-on  with  other  plaborms   –  Regex  builder  and  data  extracts  §  Low  technology  and  resource  costs   –  Implementa-on  and  maintenance  April  2012   ©  Datalicious  Pty  Ltd   32  
  22. 22. Contact  us     Learn  more     Follow  us    April  2012   ©  Datalicious  Pty  Ltd   33  
  23. 23. Data  >  Insights  >  Ac?on