[	  Data	  driven	  marke.ng	  ]	     Data	  to	  help	  create	  highly	  targeted	            and	  engaging	  campaigns...
[	  Quick	  company	  history	  ]	  §  Datalicious	  was	  founded	  in	  2007	  §  Strong	  Omniture	  web	  analy<cs	 ...
[	  Clients	  across	  all	  industries	  ]	  September	  2010	     ©	  Datalicious	  Pty	  Ltd	     3	  
[	  Using	  data	  to	  reduce	  waste	  ]	                          Media	  a>ribu.on                           	        ...
[	  The	  consumer	  data	  journey	  ]	     To	  transac.onal	  data	                                                To	 ...
[	  Coordina.on	  across	  channels	  ]	  	  	                   Genera.ng	                  Crea.ng	                     ...
[	  Combining	  targe.ng	  plaKorms	  ]	                                          Off-­‐site	                              ...
h>p://ww.wesKield.com?data=zimbio,promo.on	    September	  2010	     ©	  Datalicious	  Pty	  Ltd	     8	  
[	  Search	  and	  media	  planning	  ]	  September	  2010	     ©	  Datalicious	  Pty	  Ltd	     9	  
cookie:	  zimbio,	  promo.on,	  chris.ne,	  fashion	  September	  2010	       ©	  Datalicious	  Pty	  Ltd	     10	  
[	  Affinity	  targe.ng	  in	  ac.on	  ]	                                                                                   ...
h>p://ww.wesKield.com?data=chris.ne,promo.on	    September	  2010	     ©	  Datalicious	  Pty	  Ltd	     12	  
[	  Customer	  profiling	  in	  ac.on	  ]	                          Using	  website	  and	  email	  responses	             ...
[	  Developing	  a	  targe.ng	  matrix	  ]	               Phase	        Segment	  A/B	                           Channels	...
[	  Quality	  content	  key	  to	  success	  ]	                                     Avinash	  Kaushik:	  	             “Th...
[	  Combining	  data	  sets	  ]	            Website	  behavioural	  data	             Campaign	  response	  data	         ...
[	  Behaviours	  plus	  transac.ons	  ]	            Site	  Behaviour	                                                     ...
[	  Sample	  customer	  level	  data	  ]	  September	  2010	     ©	  Datalicious	  Pty	  Ltd	     18	  
[	  Social	  media	  as	  data	  source	  ]	   Facebook	  Connect	  gives	  your	   company	  the	  following	  data	   an...
September	  2010	     ©	  Datalicious	  Pty	  Ltd	     20	  
Appending	  social	  data	  to	  customer	  profiles	         Name,	  age,	  gender,	  occupa.on,	  loca.on,	  social	  	  ...
[	  Social	  media	  data	  poten.al	  ]	  §  Large	  Australian	  consumer	  brand	  §  20%	  of	  customer	  emails	  ...
[	  Overall	  volume	  and	  influence	  ]	                                                               Data	  from	  Sep...
[	  Influence	  and	  media	  value	  ]	                                                               US	     Data	  from	...
[	  Google	  data	  in	  Australia	  ]	                          Source:	  h_p://www.hitwise.com/au/datacentre	  September...
[	  Search	  at	  all	  stages	  ]	  September	  2010	                        ©	  Datalicious	  Pty	  Ltd	                ...
[	  Search	  and	  brand	  strength	  ]	  September	  2010	     ©	  Datalicious	  Pty	  Ltd	     27	  
[	  Search	  and	  the	  product	  lifecycle	  ]	     Nokia	  N-­‐Series	     Apple	  iPhone	  September	  2010	          ...
[	  Search	  driving	  offline	  crea.ve	  ]	  September	  2010	     ©	  Datalicious	  Pty	  Ltd	     29	  
[	  Mapping	  out	  campaign	  flows	  ]	          =	  Paid	  media	                                                       ...
[	  Developing	  a	  metrics	  framework	  ]	                  Media	  and	  search	  data	                               ...
[	  De-­‐duplica.on	  across	  channels	  ]	                           Paid	  	                  Bid	  	                  ...
[	  Success	  a>ribu.on	  models	  ]	         Banner	  	      Paid	  	                                                   O...
[	  Search	  call	  to	  ac.on	  for	  offline	  ]	  September	  2010	     ©	  Datalicious	  Pty	  Ltd	     34	  
September	  2010	     ©	  Datalicious	  Pty	  Ltd	     35	  
[	  Understanding	  channel	  mix	  ]	  September	  2010	     ©	  Datalicious	  Pty	  Ltd	     36	  
[	  Target	  Denim	  ]	   §  51,737	  Visitors	   §  521,857	  Unique	  Page	       Views	  	   §  11,402	  people	  sh...
[	  Key	  traffic	  drivers	  ]	                                                                                            ...
[	  YouTube	  ]	  §  13,084	  YouTube	  views,	  70	      comments,	  636	  ra<ngs	  (490	  bad,	      136	  good)	  	   ...
[	  Campaign	  comparison	  ]	                       §  Campaign	  traffic	  was	  almost	                           that	 ...
Email	  me	                          cbartens@datalicious.com	                                     	                      ...
Upcoming SlideShare
Loading in …5
×

Data Driven Marketing - the Key to an Effective Marketing Campaign

1,116 views

Published on

The presentation discusses the impact of data driven targeting in marketing campaigns.

Published in: Technology
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,116
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
38
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Data Driven Marketing - the Key to an Effective Marketing Campaign

  1. 1. [  Data  driven  marke.ng  ]   Data  to  help  create  highly  targeted   and  engaging  campaigns  
  2. 2. [  Quick  company  history  ]  §  Datalicious  was  founded  in  2007  §  Strong  Omniture  web  analy<cs  history  §  1  of  4  global  Omniture  Preferred  Partners  §  Now  360  data  agency  with  specialist  team  §  Combina<on  of  analysts  and  developers  §  Evangelizing  smart  data  driven  marke<ng  §  Making  data  accessible  and  ac<onable  §  Driving  industry  best  prac<ce  (ADMA)  September  2010   ©  Datalicious  Pty  Ltd   2  
  3. 3. [  Clients  across  all  industries  ]  September  2010   ©  Datalicious  Pty  Ltd   3  
  4. 4. [  Using  data  to  reduce  waste  ]   Media  a>ribu.on   Op.mising  channel  mix   Targe.ng     Increasing  relevance   Tes.ng   Improving  usability   $$$  September  2010   ©  Datalicious  Pty  Ltd   4  
  5. 5. [  The  consumer  data  journey  ]   To  transac.onal  data   To  reten.on  messages   From  suspect  to   prospect   To  customer   Time   Time   From  behavioural  data   From  awareness  messages  September  2010   ©  Datalicious  Pty  Ltd   5  
  6. 6. [  Coordina.on  across  channels  ]       Genera.ng   Crea.ng   Maximising   awareness   engagement   revenue   TV,  radio,  print,   Retail  stores,  in-­‐store   Outbound  calls,  direct   outdoor,  search   kiosks,  call  centers,   mail,  emails,  social   marke<ng,  display   brochures,  websites,   media,  SMS,  mobile   ads,  performance   mobile  apps,  online   apps,  etc   networks,  affiliates,   chat,  social  media,  etc   social  media,  etc   Off-­‐site   On-­‐site   Profile     targe.ng   targe.ng   targe.ng  September  2010   ©  Datalicious  Pty  Ltd   6  
  7. 7. [  Combining  targe.ng  plaKorms  ]   Off-­‐site   targe<ng   Profile   On-­‐site   targe<ng   targe<ng  September  2010   ©  Datalicious  Pty  Ltd   7  
  8. 8. h>p://ww.wesKield.com?data=zimbio,promo.on   September  2010   ©  Datalicious  Pty  Ltd   8  
  9. 9. [  Search  and  media  planning  ]  September  2010   ©  Datalicious  Pty  Ltd   9  
  10. 10. cookie:  zimbio,  promo.on,  chris.ne,  fashion  September  2010   ©  Datalicious  Pty  Ltd   10  
  11. 11. [  Affinity  targe.ng  in  ac.on  ]   Different  type  of     visitors  respond  to     different  ads.  By   using  category   affinity  targe<ng,     response  rates  are     lied  significantly     across  products.   CTR  By  Category  Affinity   Message   Postpay   Prepay   Broadb.   Business   Blackberry  Bold   - - - + Google:  “vodafone   5GB  Mobile  Broadband   - - + - omniture  case  study”     Blackberry  Storm   + - + + or  h>p://bit.ly/de70b7   12  Month  Caps   - + - +September  2010   ©  Datalicious  Pty  Ltd   11  
  12. 12. h>p://ww.wesKield.com?data=chris.ne,promo.on   September  2010   ©  Datalicious  Pty  Ltd   12  
  13. 13. [  Customer  profiling  in  ac.on  ]   Using  website  and  email  responses   to  learn  a  li_le  bite  more  about   customers  at  every  touch  point  in   order  to  keep  refining  customer   profiles  and  customising  future   communica<ons.  September  2010   ©  Datalicious  Pty  Ltd   13  
  14. 14. [  Developing  a  targe.ng  matrix  ]   Phase   Segment  A/B   Channels   Data  Points   Social,  display,   Awareness   Seen  this?   Default   search,  etc   Social,  search,   Download,   Considera.on   Great  feature!   website,  etc   product  view   Search,  site,   Cart  add,   Purchase  Intent   Great  value!   emails,  etc   checkout,  etc   Direct  mail,   Email  response,   Up/Cross-­‐Sell   Add  this!   emails,  etc   login,  etc  September  2010   ©  Datalicious  Pty  Ltd   14  
  15. 15. [  Quality  content  key  to  success  ]   Avinash  Kaushik:     “The  principle  of  garbage  in,  garbage  out   applies  here.  […]  what  makes  a  behaviour   targe<ng  pla=orm  <ck,  and  produce  results,  is   not  its  intelligence,  it  is  your  ability  to  actually   feed  it  the  right  content  which  it  can  then  target   […].  You  feed  your  BT  system  crap  and  it  will   quickly  and  efficiently  target  crap  to  your   customers.  Faster  then  you  could     ever  have  yourself.”  September  2010   ©  Datalicious  Pty  Ltd   15  
  16. 16. [  Combining  data  sets  ]   Website  behavioural  data   Campaign  response  data   +   The  whole  is  greater     than  the  sum  of  its  parts   Customer  profile  data  September  2010   ©  Datalicious  Pty  Ltd   16  
  17. 17. [  Behaviours  plus  transac.ons  ]   Site  Behaviour   CRM  Profile   tracking  of  purchase  funnel  stage   one-­‐off  collec<on  of  demographical  data     +   browsing,  checkout,  etc   age,  gender,  address,  etc   tracking  of  content  preferences   customer  lifecycle  metrics  and  key  dates   products,  brands,  features,  etc   profitability,  expira.on,  etc   tracking  of  external  campaign  responses   predic<ve  models  based  on  data  mining   search  terms,  referrers,  etc   propensity  to  buy,  churn,  etc   tracking  of  internal  promo<on  responses   historical  data  from  previous  transac<ons   emails,  internal  search,  etc   average  order  value,  points,  etc   Updated  Con.nuously   Updated  Occasionally  September  2010   ©  Datalicious  Pty  Ltd   17  
  18. 18. [  Sample  customer  level  data  ]  September  2010   ©  Datalicious  Pty  Ltd   18  
  19. 19. [  Social  media  as  data  source  ]   Facebook  Connect  gives  your   company  the  following  data   and  more  with  just  one  click     Email  address,  first  name,  last  name,   gender,  birthday,  interests,  picture,   affilia<ons,  last  profile  update,  <me  zone,   religion,  poli<cal  interests,  a_racted  to   which  sex,  why  they  want  to  meet   someone,  home  town,  rela<onship   status,  current  loca<on,  ac<vi<es,  music   interests,  tv  show  interests,  educa<on   history,  work  history,  family,  etc   Need  anything  else?  September  2010   ©  Datalicious  Pty  Ltd   19  
  20. 20. September  2010   ©  Datalicious  Pty  Ltd   20  
  21. 21. Appending  social  data  to  customer  profiles   Name,  age,  gender,  occupa.on,  loca.on,  social     profiles  and  influencer  ranking  based  on  email   (influencers  only)   (all  contacts)  September  2010   ©  Datalicious  Pty  Ltd   21  
  22. 22. [  Social  media  data  poten.al  ]  §  Large  Australian  consumer  brand  §  20%  of  customer  emails  had  social  profiles  §  Each  profile  had  an  average  of  8  friends  §  2%  of  profiles  had  an  influencer  score  §  0.5%  of  social  had  a  score  of  over  10  §  For  a  database  of  500,000  that  would  mean  §  Poten<al  addi<onal  reach  of  100,000  friends  §  Includes  2,500  influen<al  individuals  September  2010   ©  Datalicious  Pty  Ltd   22  
  23. 23. [  Overall  volume  and  influence  ]   Data  from  September  2010   ©  Datalicious  Pty  Ltd   23  
  24. 24. [  Influence  and  media  value  ]   US   Data  from   UK   AU/NZ  September  2010   ©  Datalicious  Pty  Ltd   24  
  25. 25. [  Google  data  in  Australia  ]   Source:  h_p://www.hitwise.com/au/datacentre  September  2010   ©  Datalicious  Pty  Ltd   25  
  26. 26. [  Search  at  all  stages  ]  September  2010   ©  Datalicious  Pty  Ltd   26   Source:  Inside  the  Mind  of  the  Searcher,  Enquiro  2004  
  27. 27. [  Search  and  brand  strength  ]  September  2010   ©  Datalicious  Pty  Ltd   27  
  28. 28. [  Search  and  the  product  lifecycle  ]   Nokia  N-­‐Series   Apple  iPhone  September  2010   ©  Datalicious  Pty  Ltd   28  
  29. 29. [  Search  driving  offline  crea.ve  ]  September  2010   ©  Datalicious  Pty  Ltd   29  
  30. 30. [  Mapping  out  campaign  flows  ]   =  Paid  media   Organic     PR,  WOM,   search   events,  etc   =  Viral  elements   =  Coupons,  surveys   YouTube,     Home  pages,   Paid     TV,  print,     blog,  etc   portals,  etc   search   radio,  etc   Direct  mail,     Landing  pages,   Display  ads,   email,  etc   offers,  etc   affiliates,  etc   C1   C2   CRM   Facebook   program   Twi>er,  etc   C3   POS  kiosks,   Call  center,     loyalty  cards,  etc   retail  stores,  etc  September  2010   ©  Datalicious  Pty  Ltd   30  
  31. 31. [  Developing  a  metrics  framework  ]   Media  and  search  data   Website,  call  center  and  retail  data   People   People   People   People   Reached   40%   Engaged   10%   Converted   1%   Delighted   Quan<ta<ve  and  qualita<ve  research  data   Social  media  data   Social  media  September  2010   ©  Datalicious  Pty  Ltd   31  
  32. 32. [  De-­‐duplica.on  across  channels  ]   Paid     Bid     Search   Mgmt   $   Banner     Ad     Ads   Server   $   Central   Analy.cs   PlaKorm   Email     Email   Blast   PlaKorm   $   Organic   Google   Search   Analy.cs   $  September  2010   ©  Datalicious  Pty  Ltd   32  
  33. 33. [  Success  a>ribu.on  models  ]   Banner     Paid     Organic   Success   Last  channel   Search   Ad   Search   $100   $100   gets  all  credit   Banner     Paid     Email     Success   First  channel   Ad   $100   Search   Blast   $100   gets  all  credit   Paid     Banner     Affiliate     Success   All  channels  get   Search   Ad   Referral   $100   $100   $100   $100   equal  credit   Print     Social     Paid     Success   All  channels  get   Ad   Media   Search   $33   $33   $33   $100   par.al  credit  September  2010   ©  Datalicious  Pty  Ltd   33  
  34. 34. [  Search  call  to  ac.on  for  offline  ]  September  2010   ©  Datalicious  Pty  Ltd   34  
  35. 35. September  2010   ©  Datalicious  Pty  Ltd   35  
  36. 36. [  Understanding  channel  mix  ]  September  2010   ©  Datalicious  Pty  Ltd   36  
  37. 37. [  Target  Denim  ]   §  51,737  Visitors   §  521,857  Unique  Page   Views     §  11,402  people  shared   on  Facebook  (Most  from   emails  or  Facebook)   §  6,821  TVC  Views   §  82%  New  Visits  (Target   average  73%)   §  2,005  Wins   §  Average  Time  on  site   is  2.25  minutes  (Target   average  1.07  minutes)  September  2010   ©  Datalicious  Pty  Ltd   37  
  38. 38. [  Key  traffic  drivers  ]   §  The  campaign  had   a  huge  first  day   before  paid  media   began  which  built   momentum  early  NB:  Removed  data  from  Friday  Feb  11th  as  due  to  extreme  skew   September  2010   ©  Datalicious  Pty  Ltd   38  
  39. 39. [  YouTube  ]  §  13,084  YouTube  views,  70   comments,  636  ra<ngs  (490  bad,   136  good)     –  Silvia  Pfeiffer  from  Vquence  found  that   males  aged  15  –  25  were  more  likely  to   comment  than  any  other  demographic   Engagement  compared  to  videos  of  similar  length   §  Higher  than  average  engagement   from  viewers  compared  to  videos   of  a  similar  length   §  Honourable  men<ons  for  the  week   ending  the  Feb  21st     September  2010   ©  Datalicious  Pty  Ltd   39  
  40. 40. [  Campaign  comparison  ]   §  Campaign  traffic  was  almost   that  of  Christmas  and  much   higher  than  the  very   successful  ‘Colours’  campaign   Christmas  =  Nov  20  to  Dec  30,  2009   Colours  =  Aug  7  –  Sep  16,  2009   §  Looking  only  at  campaign  Site  Visits   incep<on,  it  did  drive   56%  of  Visits  occur  in  the   higher  daily  average  traffic;   first  4  days     34k  to  32k  respec<vely   September  2010   ©  Datalicious  Pty  Ltd   40  
  41. 41. Email  me   cbartens@datalicious.com     Follow  us   twi>er.com/datalicious     Learn  more   blog.datalicious.com    September  2010   ©  Datalicious  Pty  Ltd   41  

×