We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
The ever-increasing interest around deep learning and neural networks has led to a vast increase in processing frameworks like TensorFlow and PyTorch. These libraries are built around the idea of a computational graph that models the dataflow of individual units. Because tensors are their basic computational unit, these frameworks can run efficiently on hardware accelerators (e.g. GPUs).Traditional machine learning (ML) such as linear regressions and decision trees in scikit-learn cannot currently be run on GPUs, missing out on the potential accelerations that deep learning and neural networks enjoy.
In this talk, we’ll show how you can use Hummingbird to achieve 1000x speedup in inferencing on GPUs by converting your traditional ML models to tensor-based models (PyTorch andTVM). https://github.com/microsoft/hummingbird
This talk is for intermediate audiences that use traditional machine learning and want to speedup the time it takes to perform inference with these models. After watching the talk, the audience should be able to use ~5 lines of code to convert their traditional models to tensor-based models to be able to try them out on GPUs.
Outline:
Introduction of what ML inference is (and why it’s different than training)
Motivation: Tensor-based DNN frameworks allow inference on GPU, but “traditional” ML frameworks do not
Why “traditional” ML methods are important
Introduction of what Hummingbirddoes and main benefits
Deep dive on how traditional ML models are built
Brief intro onhow Hummingbird converter works
Example of how Hummingbird can convert a tree model into a tensor-based model
Other models
Demo
Status
Q&A
The ever-increasing interest around deep learning and neural networks has led to a vast increase in processing frameworks like TensorFlow and PyTorch. These libraries are built around the idea of a computational graph that models the dataflow of individual units. Because tensors are their basic computational unit, these frameworks can run efficiently on hardware accelerators (e.g. GPUs).Traditional machine learning (ML) such as linear regressions and decision trees in scikit-learn cannot currently be run on GPUs, missing out on the potential accelerations that deep learning and neural networks enjoy.
In this talk, we’ll show how you can use Hummingbird to achieve 1000x speedup in inferencing on GPUs by converting your traditional ML models to tensor-based models (PyTorch andTVM). https://github.com/microsoft/hummingbird
This talk is for intermediate audiences that use traditional machine learning and want to speedup the time it takes to perform inference with these models. After watching the talk, the audience should be able to use ~5 lines of code to convert their traditional models to tensor-based models to be able to try them out on GPUs.
Outline:
Introduction of what ML inference is (and why it’s different than training)
Motivation: Tensor-based DNN frameworks allow inference on GPU, but “traditional” ML frameworks do not
Why “traditional” ML methods are important
Introduction of what Hummingbirddoes and main benefits
Deep dive on how traditional ML models are built
Brief intro onhow Hummingbird converter works
Example of how Hummingbird can convert a tree model into a tensor-based model
Other models
Demo
Status
Q&A
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!