We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
At NMC (Nielsen Marketing Cloud) we provide our customers (marketers and publishers) real-time analytics tools to profile their target audiences. To achieve that, we need to ingest billions of events per day into our big data stores, and we need to do it in a scalable yet cost-efficient manner.
In this session, we will discuss how we continuously transform our data infrastructure to support these goals. Specifically, we will review how we went from CSV files and standalone Java applications all the way to multiple Kafka and Spark clusters, performing a mixture of Streaming and Batch ETLs, and supporting 10x data growth We will share our experience as early-adopters of Spark Streaming and Spark Structured Streaming, and how we overcame technical barriers (and there were plenty). We will present a rather unique solution of using Kafka to imitate streaming over our Data Lake, while significantly reducing our cloud services’ costs. Topics include:
Kafka and Spark Streaming for stateless and stateful use-cases
Spark Structured Streaming as a possible alternative
Combining Spark Streaming with batch ETLs
”Streaming” over Data Lake using Kafka
At NMC (Nielsen Marketing Cloud) we provide our customers (marketers and publishers) real-time analytics tools to profile their target audiences. To achieve that, we need to ingest billions of events per day into our big data stores, and we need to do it in a scalable yet cost-efficient manner.
In this session, we will discuss how we continuously transform our data infrastructure to support these goals. Specifically, we will review how we went from CSV files and standalone Java applications all the way to multiple Kafka and Spark clusters, performing a mixture of Streaming and Batch ETLs, and supporting 10x data growth We will share our experience as early-adopters of Spark Streaming and Spark Structured Streaming, and how we overcame technical barriers (and there were plenty). We will present a rather unique solution of using Kafka to imitate streaming over our Data Lake, while significantly reducing our cloud services’ costs. Topics include:
Kafka and Spark Streaming for stateless and stateful use-cases
Spark Structured Streaming as a possible alternative
Combining Spark Streaming with batch ETLs
”Streaming” over Data Lake using Kafka
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!