We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
In the Manufacturing industry, reliability and time to market are key factors to accomplish business goals. Nowadays, Analytics are more and more deployed to get insights’ from data and foster a data driven culture to achieve a greater effectiveness and efficiency within business operations.
In the Analytics domain, real challenges are often represented by data collection, such as the existence of heterogeneous and widespread data sources and the choice of ingestion technologies and strategies, the need to ensure a continuous data inflow and to release production-ready Analytics services to be integrated into in daily operations
In order to address those challenges, Magneti Marelli ICT Innovation team has adopted a structured approach starting from foundations, that is by building a distinctive Big Data Architecture, known as the Magneti Marelli Architecture (MARC). Differently from common Big Data architectures, which are developed on batch or streaming paradigms, MARC is an event and service oriented architecture with the flexibility to manage complex tasks running both in the DMZ plant, in the plant network and in Cloud. It combines traditional patterns for handling data, such as “Service Broker”, “Forwarder”, “Singleton”, “Wrapping”, “Store and Forward”, with best of breed technologies such as Databricks, Microsoft Azure Data Lake Store, Azure SQL, PowerBI and Azure Functions.
In this presentation MARC key components will be introduced, together with main integrated services. Additionally, it will be shown how mentioned routine issues in data management will be addressed and solved with the aid of MARC unique structure and related services: practical examples will be provided for incremental data ingestion, incremental data processing, hybrid Spark deployments and the usage of heterogeneous Application Servers. Finally, it will be clear how the adoption of a structured approach to the development of Big Data Architecture for data management has dramatically fostered the demand for Analytics services and their effective use by the business to accomplish manufacturing cost reduction.
In the Manufacturing industry, reliability and time to market are key factors to accomplish business goals. Nowadays, Analytics are more and more deployed to get insights’ from data and foster a data driven culture to achieve a greater effectiveness and efficiency within business operations.
In the Analytics domain, real challenges are often represented by data collection, such as the existence of heterogeneous and widespread data sources and the choice of ingestion technologies and strategies, the need to ensure a continuous data inflow and to release production-ready Analytics services to be integrated into in daily operations
In order to address those challenges, Magneti Marelli ICT Innovation team has adopted a structured approach starting from foundations, that is by building a distinctive Big Data Architecture, known as the Magneti Marelli Architecture (MARC). Differently from common Big Data architectures, which are developed on batch or streaming paradigms, MARC is an event and service oriented architecture with the flexibility to manage complex tasks running both in the DMZ plant, in the plant network and in Cloud. It combines traditional patterns for handling data, such as “Service Broker”, “Forwarder”, “Singleton”, “Wrapping”, “Store and Forward”, with best of breed technologies such as Databricks, Microsoft Azure Data Lake Store, Azure SQL, PowerBI and Azure Functions.
In this presentation MARC key components will be introduced, together with main integrated services. Additionally, it will be shown how mentioned routine issues in data management will be addressed and solved with the aid of MARC unique structure and related services: practical examples will be provided for incremental data ingestion, incremental data processing, hybrid Spark deployments and the usage of heterogeneous Application Servers. Finally, it will be clear how the adoption of a structured approach to the development of Big Data Architecture for data management has dramatically fostered the demand for Analytics services and their effective use by the business to accomplish manufacturing cost reduction.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!