We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
The volume of available data is growing by the second (to an estimated 175 zetabytes by 2025), and it is becoming increasingly granular in its information. With that change every organization is moving towards building a data driven culture. We at Northwestern Mutual share similar story of driving towards making data driven decisions to improve both efficiency and effectiveness. Legacy system analysis revealed bottlenecks, excesses, duplications etc. Based on ever growing need to analyze more data our BI Team decided to make a move to more modern, scalable, cost effective data platform. As a financial company, data security is as important as ingestion of data. In addition to fast ingestion and compute we would need a solution that can support column level encryption, Role based access to different teams from our datalake.
In this talk we describe our journey to move 100’s of ELT jobs from current MSBI stack to Databricks and building a datalake (using Lakehouse). How we reduced our daily data load time from 7 hours to 2 hours with capability to ingest more data. Share our experience, challenges, learning, architecture and design patterns used while undertaking this huge migration effort. Different sets of tools/frameworks built by our engineers to help ease the learning curve that our non-Apache Spark engineers would have to go through during this migration. You will leave this session with more understand on what it would mean for you and your organization if you are thinking about migrating to Apache Spark/Databricks.
The volume of available data is growing by the second (to an estimated 175 zetabytes by 2025), and it is becoming increasingly granular in its information. With that change every organization is moving towards building a data driven culture. We at Northwestern Mutual share similar story of driving towards making data driven decisions to improve both efficiency and effectiveness. Legacy system analysis revealed bottlenecks, excesses, duplications etc. Based on ever growing need to analyze more data our BI Team decided to make a move to more modern, scalable, cost effective data platform. As a financial company, data security is as important as ingestion of data. In addition to fast ingestion and compute we would need a solution that can support column level encryption, Role based access to different teams from our datalake.
In this talk we describe our journey to move 100’s of ELT jobs from current MSBI stack to Databricks and building a datalake (using Lakehouse). How we reduced our daily data load time from 7 hours to 2 hours with capability to ingest more data. Share our experience, challenges, learning, architecture and design patterns used while undertaking this huge migration effort. Different sets of tools/frameworks built by our engineers to help ease the learning curve that our non-Apache Spark engineers would have to go through during this migration. You will leave this session with more understand on what it would mean for you and your organization if you are thinking about migrating to Apache Spark/Databricks.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!