Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Timely data in a data warehouse is a challenge many of us face, often with there being no straightforward solution.
Using a combination of batch and streaming data pipelines you can leverage the Delta Lake format to provide an enterprise data warehouse at a near real-time frequency. Delta Lake eases the ETL workload by enabling ACID transactions in a warehousing environment. Coupling this with structured streaming, you can achieve a low latency data warehouse. In this talk, we’ll talk about how to use Delta Lake to improve the latency of ingestion and storage of your data warehouse tables. We’ll also talk about how you can use spark streaming to build the aggregations and tables that drive your data warehouse.
Login to see the comments