We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
Adding nodes at runtime (Upscale) to already running Spark-on-Yarn clusters is fairly easy. But taking away these nodes (Downscale) when the workload is low at some later point of time is a difficult problem. To remove a node from a running cluster, we need to make sure that it is not used for compute as well as storage.
But on production workloads, we see that many of the nodes can’t be taken away because:
Nodes are running some containers although they are not fully utilized i.e., containers are fragmented on different nodes. Example. – each node is running 1-2 containers/executors although they have resources to run 4 containers.
Nodes have some shuffle data in the local disk which will be consumed by Spark application running on this cluster later. In this case, the Resource Manager will never decide to reclaim these nodes because losing shuffle data could lead to costly recomputation of stages.
In this talk, we will talk about how we can improve downscaling in Spark-on-YARN clusters under the presence of such constraints. We will cover changes in scheduling strategy for container allocation in YARN and Spark task scheduler which together helps us achieve better packing of containers. This makes sure that containers are defragmented on fewer set of nodes and thus some nodes don’t have any compute. In addition to this, we will also cover enhancements to Spark driver and External Shuffle Service (ESS) which helps us to proactively delete shuffle data which we already know has been consumed. This makes sure that nodes are not holding any unnecessary shuffle data – thus freeing them from storage and hence available for reclamation for faster downscaling.
Adding nodes at runtime (Upscale) to already running Spark-on-Yarn clusters is fairly easy. But taking away these nodes (Downscale) when the workload is low at some later point of time is a difficult problem. To remove a node from a running cluster, we need to make sure that it is not used for compute as well as storage.
But on production workloads, we see that many of the nodes can’t be taken away because:
Nodes are running some containers although they are not fully utilized i.e., containers are fragmented on different nodes. Example. – each node is running 1-2 containers/executors although they have resources to run 4 containers.
Nodes have some shuffle data in the local disk which will be consumed by Spark application running on this cluster later. In this case, the Resource Manager will never decide to reclaim these nodes because losing shuffle data could lead to costly recomputation of stages.
In this talk, we will talk about how we can improve downscaling in Spark-on-YARN clusters under the presence of such constraints. We will cover changes in scheduling strategy for container allocation in YARN and Spark task scheduler which together helps us achieve better packing of containers. This makes sure that containers are defragmented on fewer set of nodes and thus some nodes don’t have any compute. In addition to this, we will also cover enhancements to Spark driver and External Shuffle Service (ESS) which helps us to proactively delete shuffle data which we already know has been consumed. This makes sure that nodes are not holding any unnecessary shuffle data – thus freeing them from storage and hence available for reclamation for faster downscaling.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!