Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
What to Upload to SlideShare
Next
Download to read offline and view in fullscreen.

0

Share

Building an ML Platform with Ray and MLflow

Download to read offline

A successful machine learning platform allows ML practitioners to focus solely on their experiments and models and minimizes the time it takes to develop ML applications and take them to production. However, building an ML Platform is typically not an easy task due to the many different components involved in the process. In this talk, we will show how two open source projects, Ray (https://ray.io/) and MLflow (https://mlflow.org/), work together to make it easy for ML platform developers to add scaling and experiment management to their platform.

We will first provide an overview of Ray and its native libraries: Ray Tune (https://tune.io) for distributed hyperparameter tuning and Ray Serve (https://docs.ray.io/en/master/serve/index.html) for scalable model serving. Then we will showcase how MLflow provides a perfect solution for managing experiments through integrations with Ray for tracking and model deployment. Finally, we will finish with a demo of an ML platform built on Ray, MLflow, and other open source tools.

  • Be the first to like this

A successful machine learning platform allows ML practitioners to focus solely on their experiments and models and minimizes the time it takes to develop ML applications and take them to production. However, building an ML Platform is typically not an easy task due to the many different components involved in the process. In this talk, we will show how two open source projects, Ray (https://ray.io/) and MLflow (https://mlflow.org/), work together to make it easy for ML platform developers to add scaling and experiment management to their platform. We will first provide an overview of Ray and its native libraries: Ray Tune (https://tune.io) for distributed hyperparameter tuning and Ray Serve (https://docs.ray.io/en/master/serve/index.html) for scalable model serving. Then we will showcase how MLflow provides a perfect solution for managing experiments through integrations with Ray for tracking and model deployment. Finally, we will finish with a demo of an ML platform built on Ray, MLflow, and other open source tools.

Views

Total views

98

On Slideshare

0

From embeds

0

Number of embeds

0

Actions

Downloads

7

Shares

0

Comments

0

Likes

0

×