Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Hyperparameter tuning and optimization is a powerful tool in the area of AutoML, for both traditional statistical learning models as well as for deep learning. There are many existing tools to help drive this process, including both blackbox and whitebox tuning. In this talk, we'll start with a brief survey of the most popular techniques for hyperparameter tuning (e.g., grid search, random search, Bayesian optimization, and parzen estimators) and then discuss the open source tools which implement each of these techniques. Finally, we will discuss how we can leverage MLflow with these tools and techniques to analyze how our search is performing and to productionize the best models.
Speaker: Joseph Bradley
Login to see the comments