We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
At Qubole, users run Spark at scale on cloud (900+ concurrent nodes). At such scale, for efficiently running SLA critical jobs, tuning Spark configurations is essential. But it continues to be a difficult undertaking, largely driven by trial and error. In this talk, we will address the problem of auto-tuning SQL workloads on Spark. The same technique can also be adapted for non-SQL Spark workloads. In our earlier work[1], we proposed a model based on simple rules and insights. It was simple yet effective at optimizing queries and finding the right instance types to run queries. However, with respect to auto tuning Spark configurations we saw scope of improvement. On exploration, we found previous works addressing auto-tuning using Machine learning techniques. One major drawback of the simple model[1] is that it cannot use multiple runs of query for improving recommendation, whereas the major drawback with Machine Learning techniques is that it lacks domain specific knowledge. Hence, we decided to combine both techniques. Our auto-tuner interacts with both models to arrive at good configurations. Once user selects a query to auto tune, the next configuration is computed from models and the query is run with it. Metrics from event log of the run is fed back to models to obtain next configuration. Auto-tuner will continue exploring good configurations until it meets the fixed budget specified by the user. We found that in practice, this method gives much better configurations compared to configurations chosen even by experts on real workload and converges soon to optimal configuration. In this talk, we will present a novel ML model technique and the way it was combined with our earlier approach. Results on real workload will be presented along with limitations and challenges in productionizing them. [1] Margoor et al,'Automatic Tuning of SQL-on-Hadoop Engines' 2018,IEEE CLOUD
At Qubole, users run Spark at scale on cloud (900+ concurrent nodes). At such scale, for efficiently running SLA critical jobs, tuning Spark configurations is essential. But it continues to be a difficult undertaking, largely driven by trial and error. In this talk, we will address the problem of auto-tuning SQL workloads on Spark. The same technique can also be adapted for non-SQL Spark workloads. In our earlier work[1], we proposed a model based on simple rules and insights. It was simple yet effective at optimizing queries and finding the right instance types to run queries. However, with respect to auto tuning Spark configurations we saw scope of improvement. On exploration, we found previous works addressing auto-tuning using Machine learning techniques. One major drawback of the simple model[1] is that it cannot use multiple runs of query for improving recommendation, whereas the major drawback with Machine Learning techniques is that it lacks domain specific knowledge. Hence, we decided to combine both techniques. Our auto-tuner interacts with both models to arrive at good configurations. Once user selects a query to auto tune, the next configuration is computed from models and the query is run with it. Metrics from event log of the run is fed back to models to obtain next configuration. Auto-tuner will continue exploring good configurations until it meets the fixed budget specified by the user. We found that in practice, this method gives much better configurations compared to configurations chosen even by experts on real workload and converges soon to optimal configuration. In this talk, we will present a novel ML model technique and the way it was combined with our earlier approach. Results on real workload will be presented along with limitations and challenges in productionizing them. [1] Margoor et al,'Automatic Tuning of SQL-on-Hadoop Engines' 2018,IEEE CLOUD
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!