SlideShare a Scribd company logo

Arbitrary Stateful Aggregation and MERGE INTO - Data + AI Summit EU 2020

Jules Damji and Denny Lee from Databricks Developer Relations will recap some keynote highlights, and each will briefly present personal picks from sessions that resonated well with them. Next, Jacek Laskowski, an independent consultant, will speak about Spark 3.0 internals, and Scott Haines from Twilio, Inc. will give a talk about structured streaming microservice architectures. This live coding session and technical deep dive are not to be missed!

1 of 11
Download to read offline
Arbitrary Stateful Aggregation
and MERGE INTO
Spark Structured Streaming + Delta Lake = “Double Metrics”
Jacek Laskowski jaceklaskowski / November 2020
About the Speaker
Jacek Laskowski is an IT Freelancer specializing in Apache
Spark, Delta Lake, Apache Kafka and Kafka Streams.
Contact me at jacek@japila.pl or DM on twitter
@jaceklaskowski to discuss opportunities.
Best known by "The Internals Of" online books @
https://books.japila.pl
The Internals of Delta Lake
1. Available for free @
https://books.japila.pl/delta-lake-internals
Friendly Reminder
Should you have any questions,
Feel free to ask them in the chat window.
I’m going to answer them at the end of the talk.
Thank you!
Client Requirements and Recommendations
1. A client wants to load Kafka records at
regular intervals
● Spark Structured Streaming
2. A client wants to do a stateful
aggregation in a custom per-group way
● KeyValueGroupedDataset.flatMapGroups
WithState
3. A client wants to update a Delta table
with aggregation results
● MERGE INTO
● DataStreamWriter.foreachBatch
Arbitrary Stateful Aggregation
1. KeyValueGroupedDataset.flatMapGroupsWithState (scaladoc)
2. A user-defined per-group state
3. For a static batch Dataset, the function will be invoked once per group
4. For a streaming Dataset, the function will be invoked for each group repeatedly
in every trigger, and updates to each group's state will be saved across
invocations

Recommended

Spark Meetup Amsterdam - Dealing with Bad Actors in ETL, Databricks
Spark Meetup Amsterdam - Dealing with Bad Actors in ETL, DatabricksSpark Meetup Amsterdam - Dealing with Bad Actors in ETL, Databricks
Spark Meetup Amsterdam - Dealing with Bad Actors in ETL, DatabricksGoDataDriven
 
Scaling Machine Learning Feature Engineering in Apache Spark at Facebook
Scaling Machine Learning Feature Engineering in Apache Spark at FacebookScaling Machine Learning Feature Engineering in Apache Spark at Facebook
Scaling Machine Learning Feature Engineering in Apache Spark at FacebookDatabricks
 
A look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsA look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsDatabricks
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksDatabricks
 
Exceptions are the Norm: Dealing with Bad Actors in ETL
Exceptions are the Norm: Dealing with Bad Actors in ETLExceptions are the Norm: Dealing with Bad Actors in ETL
Exceptions are the Norm: Dealing with Bad Actors in ETLDatabricks
 
Parallelize R Code Using Apache Spark
Parallelize R Code Using Apache Spark Parallelize R Code Using Apache Spark
Parallelize R Code Using Apache Spark Databricks
 
Optimizing Apache Spark UDFs
Optimizing Apache Spark UDFsOptimizing Apache Spark UDFs
Optimizing Apache Spark UDFsDatabricks
 
Introduction to Apache Spark Developer Training
Introduction to Apache Spark Developer TrainingIntroduction to Apache Spark Developer Training
Introduction to Apache Spark Developer TrainingCloudera, Inc.
 

More Related Content

What's hot

Koalas: Interoperability Between Koalas and Apache Spark
Koalas: Interoperability Between Koalas and Apache SparkKoalas: Interoperability Between Koalas and Apache Spark
Koalas: Interoperability Between Koalas and Apache SparkDatabricks
 
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a LaptopProject Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a LaptopDatabricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationDatabricks
 
Spark SQL - 10 Things You Need to Know
Spark SQL - 10 Things You Need to KnowSpark SQL - 10 Things You Need to Know
Spark SQL - 10 Things You Need to KnowKristian Alexander
 
Building Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache SparkBuilding Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache SparkDatabricks
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapePaco Nathan
 
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...Databricks
 
Spark SQL Join Improvement at Facebook
Spark SQL Join Improvement at FacebookSpark SQL Join Improvement at Facebook
Spark SQL Join Improvement at FacebookDatabricks
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Databricks
 
From Pipelines to Refineries: Scaling Big Data Applications
From Pipelines to Refineries: Scaling Big Data ApplicationsFrom Pipelines to Refineries: Scaling Big Data Applications
From Pipelines to Refineries: Scaling Big Data ApplicationsDatabricks
 
SPARQL and Linked Data Benchmarking
SPARQL and Linked Data BenchmarkingSPARQL and Linked Data Benchmarking
SPARQL and Linked Data BenchmarkingKristian Alexander
 
Taking Spark Streaming to the Next Level with Datasets and DataFrames
Taking Spark Streaming to the Next Level with Datasets and DataFramesTaking Spark Streaming to the Next Level with Datasets and DataFrames
Taking Spark Streaming to the Next Level with Datasets and DataFramesDatabricks
 
Why you should care about data layout in the file system with Cheng Lian and ...
Why you should care about data layout in the file system with Cheng Lian and ...Why you should care about data layout in the file system with Cheng Lian and ...
Why you should care about data layout in the file system with Cheng Lian and ...Databricks
 
What is New with Apache Spark Performance Monitoring in Spark 3.0
What is New with Apache Spark Performance Monitoring in Spark 3.0What is New with Apache Spark Performance Monitoring in Spark 3.0
What is New with Apache Spark Performance Monitoring in Spark 3.0Databricks
 
Scaling Apache Spark at Facebook
Scaling Apache Spark at FacebookScaling Apache Spark at Facebook
Scaling Apache Spark at FacebookDatabricks
 
Spark shuffle introduction
Spark shuffle introductionSpark shuffle introduction
Spark shuffle introductioncolorant
 
Spark overview
Spark overviewSpark overview
Spark overviewLisa Hua
 
Robust and Scalable ETL over Cloud Storage with Apache Spark
Robust and Scalable ETL over Cloud Storage with Apache SparkRobust and Scalable ETL over Cloud Storage with Apache Spark
Robust and Scalable ETL over Cloud Storage with Apache SparkDatabricks
 

What's hot (20)

Koalas: Interoperability Between Koalas and Apache Spark
Koalas: Interoperability Between Koalas and Apache SparkKoalas: Interoperability Between Koalas and Apache Spark
Koalas: Interoperability Between Koalas and Apache Spark
 
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a LaptopProject Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
 
Spark SQL - 10 Things You Need to Know
Spark SQL - 10 Things You Need to KnowSpark SQL - 10 Things You Need to Know
Spark SQL - 10 Things You Need to Know
 
Building Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache SparkBuilding Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache Spark
 
Spark sql
Spark sqlSpark sql
Spark sql
 
Spark SQL
Spark SQLSpark SQL
Spark SQL
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscape
 
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...
 
Spark SQL Join Improvement at Facebook
Spark SQL Join Improvement at FacebookSpark SQL Join Improvement at Facebook
Spark SQL Join Improvement at Facebook
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
 
From Pipelines to Refineries: Scaling Big Data Applications
From Pipelines to Refineries: Scaling Big Data ApplicationsFrom Pipelines to Refineries: Scaling Big Data Applications
From Pipelines to Refineries: Scaling Big Data Applications
 
SPARQL and Linked Data Benchmarking
SPARQL and Linked Data BenchmarkingSPARQL and Linked Data Benchmarking
SPARQL and Linked Data Benchmarking
 
Taking Spark Streaming to the Next Level with Datasets and DataFrames
Taking Spark Streaming to the Next Level with Datasets and DataFramesTaking Spark Streaming to the Next Level with Datasets and DataFrames
Taking Spark Streaming to the Next Level with Datasets and DataFrames
 
Why you should care about data layout in the file system with Cheng Lian and ...
Why you should care about data layout in the file system with Cheng Lian and ...Why you should care about data layout in the file system with Cheng Lian and ...
Why you should care about data layout in the file system with Cheng Lian and ...
 
What is New with Apache Spark Performance Monitoring in Spark 3.0
What is New with Apache Spark Performance Monitoring in Spark 3.0What is New with Apache Spark Performance Monitoring in Spark 3.0
What is New with Apache Spark Performance Monitoring in Spark 3.0
 
Scaling Apache Spark at Facebook
Scaling Apache Spark at FacebookScaling Apache Spark at Facebook
Scaling Apache Spark at Facebook
 
Spark shuffle introduction
Spark shuffle introductionSpark shuffle introduction
Spark shuffle introduction
 
Spark overview
Spark overviewSpark overview
Spark overview
 
Robust and Scalable ETL over Cloud Storage with Apache Spark
Robust and Scalable ETL over Cloud Storage with Apache SparkRobust and Scalable ETL over Cloud Storage with Apache Spark
Robust and Scalable ETL over Cloud Storage with Apache Spark
 

Similar to Arbitrary Stateful Aggregation and MERGE INTO - Data + AI Summit EU 2020

 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin... Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...Jacek Laskowski
 
Akka 2.4 plus commercial features in Typesafe Reactive Platform
Akka 2.4 plus commercial features in Typesafe Reactive PlatformAkka 2.4 plus commercial features in Typesafe Reactive Platform
Akka 2.4 plus commercial features in Typesafe Reactive PlatformLegacy Typesafe (now Lightbend)
 
Akka 2.4 plus new commercial features in Typesafe Reactive Platform
Akka 2.4 plus new commercial features in Typesafe Reactive PlatformAkka 2.4 plus new commercial features in Typesafe Reactive Platform
Akka 2.4 plus new commercial features in Typesafe Reactive PlatformLegacy Typesafe (now Lightbend)
 
Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)
Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)
Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)Databricks
 
What is Apache Kafka®?
What is Apache Kafka®?What is Apache Kafka®?
What is Apache Kafka®?Eventador
 
What is apache Kafka?
What is apache Kafka?What is apache Kafka?
What is apache Kafka?Kenny Gorman
 
SMACK Stack - Fast Data Done Right by Stefan Siprell at Codemotion Dubai
SMACK Stack - Fast Data Done Right by Stefan Siprell at Codemotion DubaiSMACK Stack - Fast Data Done Right by Stefan Siprell at Codemotion Dubai
SMACK Stack - Fast Data Done Right by Stefan Siprell at Codemotion DubaiCodemotion Dubai
 
HUG France Feb 2016 - Migration de données structurées entre Hadoop et RDBMS ...
HUG France Feb 2016 - Migration de données structurées entre Hadoop et RDBMS ...HUG France Feb 2016 - Migration de données structurées entre Hadoop et RDBMS ...
HUG France Feb 2016 - Migration de données structurées entre Hadoop et RDBMS ...Modern Data Stack France
 
Deep Dive Into Kafka Streams (and the Distributed Stream Processing Engine) (...
Deep Dive Into Kafka Streams (and the Distributed Stream Processing Engine) (...Deep Dive Into Kafka Streams (and the Distributed Stream Processing Engine) (...
Deep Dive Into Kafka Streams (and the Distributed Stream Processing Engine) (...confluent
 
Streampunk - The Difference Engine for Unlocking the Kafka Black Box with Ral...
Streampunk - The Difference Engine for Unlocking the Kafka Black Box with Ral...Streampunk - The Difference Engine for Unlocking the Kafka Black Box with Ral...
Streampunk - The Difference Engine for Unlocking the Kafka Black Box with Ral...HostedbyConfluent
 
Migrating structured data between Hadoop and RDBMS
Migrating structured data between Hadoop and RDBMSMigrating structured data between Hadoop and RDBMS
Migrating structured data between Hadoop and RDBMSBouquet
 
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...Helena Edelson
 
Moving from Big Data to Fast Data? Here's How To Pick The Right Streaming Engine
Moving from Big Data to Fast Data? Here's How To Pick The Right Streaming EngineMoving from Big Data to Fast Data? Here's How To Pick The Right Streaming Engine
Moving from Big Data to Fast Data? Here's How To Pick The Right Streaming EngineLightbend
 
Akka Streams And Kafka Streams: Where Microservices Meet Fast Data
Akka Streams And Kafka Streams: Where Microservices Meet Fast DataAkka Streams And Kafka Streams: Where Microservices Meet Fast Data
Akka Streams And Kafka Streams: Where Microservices Meet Fast DataLightbend
 
Spark SQL Tutorial | Spark SQL Using Scala | Apache Spark Tutorial For Beginn...
Spark SQL Tutorial | Spark SQL Using Scala | Apache Spark Tutorial For Beginn...Spark SQL Tutorial | Spark SQL Using Scala | Apache Spark Tutorial For Beginn...
Spark SQL Tutorial | Spark SQL Using Scala | Apache Spark Tutorial For Beginn...Simplilearn
 
Display earthquakes with Akka-http
Display earthquakes with Akka-httpDisplay earthquakes with Akka-http
Display earthquakes with Akka-httpPierangelo Cecchetto
 
Understanding Akka Streams, Back Pressure, and Asynchronous Architectures
Understanding Akka Streams, Back Pressure, and Asynchronous ArchitecturesUnderstanding Akka Streams, Back Pressure, and Asynchronous Architectures
Understanding Akka Streams, Back Pressure, and Asynchronous ArchitecturesLightbend
 
Scylla Summit 2018: Scalable Stream Processing with KSQL, Kafka and ScyllaDB
Scylla Summit 2018: Scalable Stream Processing with KSQL, Kafka and ScyllaDBScylla Summit 2018: Scalable Stream Processing with KSQL, Kafka and ScyllaDB
Scylla Summit 2018: Scalable Stream Processing with KSQL, Kafka and ScyllaDBScyllaDB
 
What is Apache Kafka and What is an Event Streaming Platform?
What is Apache Kafka and What is an Event Streaming Platform?What is Apache Kafka and What is an Event Streaming Platform?
What is Apache Kafka and What is an Event Streaming Platform?confluent
 
Kafka Streams for Java enthusiasts
Kafka Streams for Java enthusiastsKafka Streams for Java enthusiasts
Kafka Streams for Java enthusiastsSlim Baltagi
 

Similar to Arbitrary Stateful Aggregation and MERGE INTO - Data + AI Summit EU 2020 (20)

 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin... Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 Kafka Streams VS Spark Structured Streaming - Modern Stream Processing Engin...
 
Akka 2.4 plus commercial features in Typesafe Reactive Platform
Akka 2.4 plus commercial features in Typesafe Reactive PlatformAkka 2.4 plus commercial features in Typesafe Reactive Platform
Akka 2.4 plus commercial features in Typesafe Reactive Platform
 
Akka 2.4 plus new commercial features in Typesafe Reactive Platform
Akka 2.4 plus new commercial features in Typesafe Reactive PlatformAkka 2.4 plus new commercial features in Typesafe Reactive Platform
Akka 2.4 plus new commercial features in Typesafe Reactive Platform
 
Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)
Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)
Extending Spark SQL 2.4 with New Data Sources (Live Coding Session)
 
What is Apache Kafka®?
What is Apache Kafka®?What is Apache Kafka®?
What is Apache Kafka®?
 
What is apache Kafka?
What is apache Kafka?What is apache Kafka?
What is apache Kafka?
 
SMACK Stack - Fast Data Done Right by Stefan Siprell at Codemotion Dubai
SMACK Stack - Fast Data Done Right by Stefan Siprell at Codemotion DubaiSMACK Stack - Fast Data Done Right by Stefan Siprell at Codemotion Dubai
SMACK Stack - Fast Data Done Right by Stefan Siprell at Codemotion Dubai
 
HUG France Feb 2016 - Migration de données structurées entre Hadoop et RDBMS ...
HUG France Feb 2016 - Migration de données structurées entre Hadoop et RDBMS ...HUG France Feb 2016 - Migration de données structurées entre Hadoop et RDBMS ...
HUG France Feb 2016 - Migration de données structurées entre Hadoop et RDBMS ...
 
Deep Dive Into Kafka Streams (and the Distributed Stream Processing Engine) (...
Deep Dive Into Kafka Streams (and the Distributed Stream Processing Engine) (...Deep Dive Into Kafka Streams (and the Distributed Stream Processing Engine) (...
Deep Dive Into Kafka Streams (and the Distributed Stream Processing Engine) (...
 
Streampunk - The Difference Engine for Unlocking the Kafka Black Box with Ral...
Streampunk - The Difference Engine for Unlocking the Kafka Black Box with Ral...Streampunk - The Difference Engine for Unlocking the Kafka Black Box with Ral...
Streampunk - The Difference Engine for Unlocking the Kafka Black Box with Ral...
 
Migrating structured data between Hadoop and RDBMS
Migrating structured data between Hadoop and RDBMSMigrating structured data between Hadoop and RDBMS
Migrating structured data between Hadoop and RDBMS
 
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
 
Moving from Big Data to Fast Data? Here's How To Pick The Right Streaming Engine
Moving from Big Data to Fast Data? Here's How To Pick The Right Streaming EngineMoving from Big Data to Fast Data? Here's How To Pick The Right Streaming Engine
Moving from Big Data to Fast Data? Here's How To Pick The Right Streaming Engine
 
Akka Streams And Kafka Streams: Where Microservices Meet Fast Data
Akka Streams And Kafka Streams: Where Microservices Meet Fast DataAkka Streams And Kafka Streams: Where Microservices Meet Fast Data
Akka Streams And Kafka Streams: Where Microservices Meet Fast Data
 
Spark SQL Tutorial | Spark SQL Using Scala | Apache Spark Tutorial For Beginn...
Spark SQL Tutorial | Spark SQL Using Scala | Apache Spark Tutorial For Beginn...Spark SQL Tutorial | Spark SQL Using Scala | Apache Spark Tutorial For Beginn...
Spark SQL Tutorial | Spark SQL Using Scala | Apache Spark Tutorial For Beginn...
 
Display earthquakes with Akka-http
Display earthquakes with Akka-httpDisplay earthquakes with Akka-http
Display earthquakes with Akka-http
 
Understanding Akka Streams, Back Pressure, and Asynchronous Architectures
Understanding Akka Streams, Back Pressure, and Asynchronous ArchitecturesUnderstanding Akka Streams, Back Pressure, and Asynchronous Architectures
Understanding Akka Streams, Back Pressure, and Asynchronous Architectures
 
Scylla Summit 2018: Scalable Stream Processing with KSQL, Kafka and ScyllaDB
Scylla Summit 2018: Scalable Stream Processing with KSQL, Kafka and ScyllaDBScylla Summit 2018: Scalable Stream Processing with KSQL, Kafka and ScyllaDB
Scylla Summit 2018: Scalable Stream Processing with KSQL, Kafka and ScyllaDB
 
What is Apache Kafka and What is an Event Streaming Platform?
What is Apache Kafka and What is an Event Streaming Platform?What is Apache Kafka and What is an Event Streaming Platform?
What is Apache Kafka and What is an Event Streaming Platform?
 
Kafka Streams for Java enthusiasts
Kafka Streams for Java enthusiastsKafka Streams for Java enthusiasts
Kafka Streams for Java enthusiasts
 

More from Databricks

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDatabricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of HadoopDatabricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDatabricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceDatabricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringDatabricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixDatabricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationDatabricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchDatabricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesDatabricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesDatabricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsDatabricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkDatabricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkDatabricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesDatabricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkDatabricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeDatabricks
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionDatabricks
 

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
 
Machine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
 

Recently uploaded

IIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdfIIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdfAustraliaChapterIIBA
 
itc limited word file.pdf...............
itc limited word file.pdf...............itc limited word file.pdf...............
itc limited word file.pdf...............mahetamanav24
 
A Gentle Introduction to Text Analysis :)
A Gentle Introduction to Text Analysis :)A Gentle Introduction to Text Analysis :)
A Gentle Introduction to Text Analysis :)UNCResearchHub
 
ppt penjualan berbasis online omset.pptx
ppt penjualan berbasis online omset.pptxppt penjualan berbasis online omset.pptx
ppt penjualan berbasis online omset.pptxHizkiaJastis
 
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...Thibaud Le Douarin
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?Denodo
 
Introduction to data science.pdf-Definition,types and application of Data Sci...
Introduction to data science.pdf-Definition,types and application of Data Sci...Introduction to data science.pdf-Definition,types and application of Data Sci...
Introduction to data science.pdf-Definition,types and application of Data Sci...DrSumathyV
 
Basics of Creating Graphs / Charts using Microsoft Excel
Basics of Creating Graphs / Charts using Microsoft ExcelBasics of Creating Graphs / Charts using Microsoft Excel
Basics of Creating Graphs / Charts using Microsoft ExcelTope Osanyintuyi
 
Artificial Intelligence for Vision: A walkthrough of recent breakthroughs
Artificial Intelligence for Vision:  A walkthrough of recent breakthroughsArtificial Intelligence for Vision:  A walkthrough of recent breakthroughs
Artificial Intelligence for Vision: A walkthrough of recent breakthroughsNikolas Markou
 
Operations Data On Mobile - inSis Mobile App - Sample Screens
Operations Data On Mobile - inSis Mobile App - Sample ScreensOperations Data On Mobile - inSis Mobile App - Sample Screens
Operations Data On Mobile - inSis Mobile App - Sample ScreensKondapi V Siva Rama Brahmam
 
Unlocking New Insights Into the World of European Soccer Through the European...
Unlocking New Insights Into the World of European Soccer Through the European...Unlocking New Insights Into the World of European Soccer Through the European...
Unlocking New Insights Into the World of European Soccer Through the European...ThinkInnovation
 
Choose your perfect jacket.pdf
Choose your perfect jacket.pdfChoose your perfect jacket.pdf
Choose your perfect jacket.pdfAlexia Trejo
 
fundamentals of digital imaging - POONAM.pptx
fundamentals of digital imaging - POONAM.pptxfundamentals of digital imaging - POONAM.pptx
fundamentals of digital imaging - POONAM.pptxPoonamRijal
 
Tips to Align with Your Salesforce Data Goals
Tips to Align with Your Salesforce Data GoalsTips to Align with Your Salesforce Data Goals
Tips to Align with Your Salesforce Data GoalsDataArchiva
 

Recently uploaded (15)

IIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdfIIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
 
itc limited word file.pdf...............
itc limited word file.pdf...............itc limited word file.pdf...............
itc limited word file.pdf...............
 
A Gentle Introduction to Text Analysis :)
A Gentle Introduction to Text Analysis :)A Gentle Introduction to Text Analysis :)
A Gentle Introduction to Text Analysis :)
 
ppt penjualan berbasis online omset.pptx
ppt penjualan berbasis online omset.pptxppt penjualan berbasis online omset.pptx
ppt penjualan berbasis online omset.pptx
 
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
 
What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?What you need to know about Generative AI and Data Management?
What you need to know about Generative AI and Data Management?
 
Introduction to data science.pdf-Definition,types and application of Data Sci...
Introduction to data science.pdf-Definition,types and application of Data Sci...Introduction to data science.pdf-Definition,types and application of Data Sci...
Introduction to data science.pdf-Definition,types and application of Data Sci...
 
Basics of Creating Graphs / Charts using Microsoft Excel
Basics of Creating Graphs / Charts using Microsoft ExcelBasics of Creating Graphs / Charts using Microsoft Excel
Basics of Creating Graphs / Charts using Microsoft Excel
 
Artificial Intelligence for Vision: A walkthrough of recent breakthroughs
Artificial Intelligence for Vision:  A walkthrough of recent breakthroughsArtificial Intelligence for Vision:  A walkthrough of recent breakthroughs
Artificial Intelligence for Vision: A walkthrough of recent breakthroughs
 
Operations Data On Mobile - inSis Mobile App - Sample Screens
Operations Data On Mobile - inSis Mobile App - Sample ScreensOperations Data On Mobile - inSis Mobile App - Sample Screens
Operations Data On Mobile - inSis Mobile App - Sample Screens
 
Electricity Year 2023_updated_22022024.pptx
Electricity Year 2023_updated_22022024.pptxElectricity Year 2023_updated_22022024.pptx
Electricity Year 2023_updated_22022024.pptx
 
Unlocking New Insights Into the World of European Soccer Through the European...
Unlocking New Insights Into the World of European Soccer Through the European...Unlocking New Insights Into the World of European Soccer Through the European...
Unlocking New Insights Into the World of European Soccer Through the European...
 
Choose your perfect jacket.pdf
Choose your perfect jacket.pdfChoose your perfect jacket.pdf
Choose your perfect jacket.pdf
 
fundamentals of digital imaging - POONAM.pptx
fundamentals of digital imaging - POONAM.pptxfundamentals of digital imaging - POONAM.pptx
fundamentals of digital imaging - POONAM.pptx
 
Tips to Align with Your Salesforce Data Goals
Tips to Align with Your Salesforce Data GoalsTips to Align with Your Salesforce Data Goals
Tips to Align with Your Salesforce Data Goals
 

Arbitrary Stateful Aggregation and MERGE INTO - Data + AI Summit EU 2020

  • 1. Arbitrary Stateful Aggregation and MERGE INTO Spark Structured Streaming + Delta Lake = “Double Metrics” Jacek Laskowski jaceklaskowski / November 2020
  • 2. About the Speaker Jacek Laskowski is an IT Freelancer specializing in Apache Spark, Delta Lake, Apache Kafka and Kafka Streams. Contact me at jacek@japila.pl or DM on twitter @jaceklaskowski to discuss opportunities. Best known by "The Internals Of" online books @ https://books.japila.pl
  • 3. The Internals of Delta Lake 1. Available for free @ https://books.japila.pl/delta-lake-internals
  • 4. Friendly Reminder Should you have any questions, Feel free to ask them in the chat window. I’m going to answer them at the end of the talk. Thank you!
  • 5. Client Requirements and Recommendations 1. A client wants to load Kafka records at regular intervals ● Spark Structured Streaming 2. A client wants to do a stateful aggregation in a custom per-group way ● KeyValueGroupedDataset.flatMapGroups WithState 3. A client wants to update a Delta table with aggregation results ● MERGE INTO ● DataStreamWriter.foreachBatch
  • 6. Arbitrary Stateful Aggregation 1. KeyValueGroupedDataset.flatMapGroupsWithState (scaladoc) 2. A user-defined per-group state 3. For a static batch Dataset, the function will be invoked once per group 4. For a streaming Dataset, the function will be invoked for each group repeatedly in every trigger, and updates to each group's state will be saved across invocations
  • 7. The Code 1. Code?! Open Intellij IDEA! 😎
  • 8. Delta Lake Users Mailing List 1. Multiple executions of flatMapGroupsWithState when DeltaTable.merge
  • 9. Possible Way-Outs (“Solutions”) 1. Separate Delta table for state? a. Avoid multiple passes over flatMapGroupsWithState
  • 10. O’Reilly Learning Spark 2nd Edition 1. Available for free @ https://dbricks.co/get-ebook 2. Chapter 9 “Building Reliable Data Lakes with Apache Spark” touches Delta Lake a. Also the competitors: Apache Hudi and Apache Iceberg
  • 11. That’s all folks! Thank you! ❤ /me Answering questions... Jacek Laskowski / @jaceklaskowski / jacek@japila.pl