We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
In order to understand and react to their security situation, many cybersecurity operations use Security information and event management (SIEM) software nowadays. Using a traditional SIEM in a large company such as HP Enterprise is a challenge due to the increasing volume and rate of data. We present the solution used to reduce data volume processed by the SIEM using Spark Streaming and the results obtained in processing one of the largest data feeds in HPE: Firewall logs. Testing of SIEM rules the traditional way is a time-consuming process. Usually, it is necessary to wait one day to get results and statistic for one-day production data. An alternative approach to build a SIEM using Spark and other big data technologies will be drafted and results of “fast forward” processing of production data snapshots will be presented. HPE is the target of sophisticated well-crafted attacks and deployed cyber Security tools are not able to detect all of them. A simple application, built using Spark MLlib and company-specific data for training, for detection of malicious trending domains will be described. Takeaways: Spark streaming can be used to pre-process cybersecurity data and reduce their amount for further processing. Spark MLlib can be used to add the additional detecting capability for specific use cases.
In this presentation, we will share how Hewlett Packard Enterprise has implemented Apache Spark to deal with three main cyber security use cases:
1) Using Spark to help Security information and event management (SIEM) process an increasing amount of data
2) Using Spark to test SIEMs rules by “fast forward” processing of production data snapshots.
3) Implementing machine learning to add an additional detection capability
In order to understand and react to their security situation, many cybersecurity operations use Security information and event management (SIEM) software nowadays. Using a traditional SIEM in a large company such as HP Enterprise is a challenge due to the increasing volume and rate of data. We present the solution used to reduce data volume processed by the SIEM using Spark Streaming and the results obtained in processing one of the largest data feeds in HPE: Firewall logs. Testing of SIEM rules the traditional way is a time-consuming process. Usually, it is necessary to wait one day to get results and statistic for one-day production data. An alternative approach to build a SIEM using Spark and other big data technologies will be drafted and results of “fast forward” processing of production data snapshots will be presented. HPE is the target of sophisticated well-crafted attacks and deployed cyber Security tools are not able to detect all of them. A simple application, built using Spark MLlib and company-specific data for training, for detection of malicious trending domains will be described. Takeaways: Spark streaming can be used to pre-process cybersecurity data and reduce their amount for further processing. Spark MLlib can be used to add the additional detecting capability for specific use cases.
In this presentation, we will share how Hewlett Packard Enterprise has implemented Apache Spark to deal with three main cyber security use cases:
1) Using Spark to help Security information and event management (SIEM) process an increasing amount of data
2) Using Spark to test SIEMs rules by “fast forward” processing of production data snapshots.
3) Implementing machine learning to add an additional detection capability
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!