We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
In this talk, we will present how we analyze, predict, and visualize network quality data, as a spark AI use case in a telecommunications company. SK Telecom is the largest wireless telecommunications provider in South Korea with 300,000 cells and 27 million subscribers. These 300,000 cells generate data every 10 seconds, the total size of which is 60TB, 120 billion records per day.
In order to address previous problems of Spark based on HDFS, we have developed a new data store for SparkSQL consisting of Redis and RocksDB that allows us to distribute and store these data in real time and analyze it right away, We were not satisfied with being able to analyze network quality in real-time, we tried to predict network quality in near future in order to quickly detect and recover network device failures, by designing network signal pattern-aware DNN model and a new in-memory data pipeline from spark to tensorflow.
In addition, by integrating Apache Livy and MapboxGL to SparkSQL and our new store, we have built a geospatial visualization system that shows the current population and signal strength of 300,000 cells on the map in real time.
In this talk, we will present how we analyze, predict, and visualize network quality data, as a spark AI use case in a telecommunications company. SK Telecom is the largest wireless telecommunications provider in South Korea with 300,000 cells and 27 million subscribers. These 300,000 cells generate data every 10 seconds, the total size of which is 60TB, 120 billion records per day.
In order to address previous problems of Spark based on HDFS, we have developed a new data store for SparkSQL consisting of Redis and RocksDB that allows us to distribute and store these data in real time and analyze it right away, We were not satisfied with being able to analyze network quality in real-time, we tried to predict network quality in near future in order to quickly detect and recover network device failures, by designing network signal pattern-aware DNN model and a new in-memory data pipeline from spark to tensorflow.
In addition, by integrating Apache Livy and MapboxGL to SparkSQL and our new store, we have built a geospatial visualization system that shows the current population and signal strength of 300,000 cells on the map in real time.
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!