SlideShare a Scribd company logo
Apache Spark 2.0:
Faster, Easier, and Smarter
Reynold Xin
@rxin
2016-05-05 Webinar
About Databricks
Founded by creatorsof Spark in 2013
Cloud enterprisedata platform
- Managed Spark clusters
- Interactive data science
- Production pipelines
- Data governance,security, …
What is Apache Spark?
Unified engineacross data workloads and platforms
…
SQLStreaming ML Graph Batch …
A slide from 2013 …
Apache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and Smarter
Spark 2.0
Steps to bigger& better things….
Builds on all we learned in past 2 years
Versioning in Spark
In reality, we hate breaking APIs!
Will notdo so exceptfor dependency conflicts(e.g.Guava) and experimental APIs
1.6.0
Patch version (only bug fixes)
Major version (may change APIs)
Minor version (addsAPIs/ features)
Major Features in 2.0
TungstenPhase 2
speedupsof 5-20x
StructuredStreaming SQL 2003
& Unifying Datasets
and DataFrames
API Foundation for the Future
Dataset, DataFrame, SQL, ML
Towards SQL 2003
As of this week, Spark branch-2.0 can run all 99 TPC-DS queries!
- New standard compliant parser(with good errormessages!)
- Subqueries(correlated& uncorrelated)
- Approximate aggregatestats
Datasets and DataFrames
In 2015, we added DataFrames & Datasets as structured data APIs
• DataFrames are collections of rows with a schema
• Datasets add static types,e.g. Dataset[Person]
• Both run on Tungsten
Spark 2.0 will merge these APIs: DataFrame = Dataset[Row]
SparkSession – a new entry point
SparkSessionis the “SparkContext”for Dataset/DataFrame
- Entry point for reading data
- Working with metadata
- Configuration
- Clusterresourcemanagement
Notebook demo
http://bit.ly/1SMPEzQ
and
http://bit.ly/1OeqdSn
Long-Term
RDD will remain the low-levelAPIin Spark
Datasets & DataFrames give richer semanticsand optimizations
• New libraries will increasingly use these as interchange format
• Examples: Structured Streaming,MLlib, GraphFrames
Other notable API improvements
DataFrame-based ML pipeline API becoming the main MLlib API
ML model & pipeline persistencewith almost complete coverage
• In all programming languages:Scala, Java, Python,R
Improved R support
• (Parallelizable) User-defined functionsin R
• Generalized LinearModels(GLMs), Naïve Bayes,Survival Regression,K-Means
Structured Streaming
How do we simplify streaming?
Background
Real-time processingis vital for streaming analytics
Apps needa combination: batch & interactive queries
• Trackstate using a stream, then run SQL queries
• Train an ML model offline, then update it
Integration Example
Streaming
engine
Stream
(home.html, 10:08)
(product.html, 10:09)
(home.html, 10:10)
. . .
What can go wrong?
• Late events
• Partial outputs to MySQL
• State recovery on failure
• Distributed reads/writes
• ...
MySQL
Page Minute Visits
home 10:09 21
pricing 10:10 30
... ... ...
Processing
Businesslogic change & new ops
(windows,sessions)
Complex Programming Models
Output
How do we define
outputover time & correctness?
Data
Late arrival, varying distribution overtime, …
The simplest way to perform streaming analytics
is not having to reason about streaming.
Spark 2.0
Infinite DataFrames
Spark 1.3
Static DataFrames
Single API !
logs = ctx.read.format("json").open("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))
.write.format("jdbc")
.save("jdbc:mysql//...")
Example: Batch Aggregation
logs = ctx.read.format("json").stream("s3://logs")
logs.groupBy(logs.user_id).agg(sum(logs.time))
.write.format("jdbc")
.startStream("jdbc:mysql//...")
Example: Continuous Aggregation
Structured Streaming
High-levelstreaming APIbuilt on Spark SQL engine
• Declarative API that extendsDataFrames / Datasets
• Eventtime, windowing,sessions,sources& sinks
Support interactive & batch queries
• Aggregate data in a stream, then serve using JDBC
• Change queriesatruntime
• Build and apply ML models Not just streaming, but
“continuous applications”
Goal: end-to-end continuous applications
Example
Reporting Applications
ML Model
Ad-hoc Queries
Traditionalstreaming
Other processingtypes
Kafka DatabaseETL
Tungsten Phase 2
Can we speed up Spark by 10X?
Demo
http://bit.ly/1X8LKmH
Going back to the fundamentals
Difficult to getorder of magnitude performancespeed ups with
profiling techniques
• For 10ximprovement,would need to find top hotspots that add up to 90%
and make theminstantaneous
• For 100x,99%
Instead, lookbottom up, how fast should it run?
Scan
Filter
Project
Aggregate
select count(*) from store_sales
where ss_item_sk = 1000
Volcano Iterator Model
Standard for 30 years: almost
all databases do it
Each operatoris an “iterator”
that consumes recordsfrom
its input operator
class Filter {
def next(): Boolean = {
var found = false
while (!found && child.next()) {
found = predicate(child.fetch())
}
return found
}
def fetch(): InternalRow = {
child.fetch()
}
…
}
What if we hire a collegefreshmanto
implement this queryin Java in 10 mins?
select count(*) from store_sales
where ss_item_sk = 1000
var count = 0
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1
}
}
Volcano model
30+ years of database research
college freshman
hand-written code in 10 mins
vs
Volcano 13.95 million
rows/sec
college
freshman
125 million
rows/sec
Note: End-to-end, single thread, single column, and data originated in Parquet on disk
High throughput
How does a student beat 30 years of research?
Volcano
1. Many virtual function calls
2. Data in memory (orcache)
3. No loop unrolling,SIMD, pipelining
hand-written code
1. No virtual function calls
2. Data in CPU registers
3. Compilerloop unrolling,SIMD,
pipelining
Take advantage of all the information that is known after query compilation
Scan
Filter
Project
Aggregate
long count = 0;
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1;
}
}
Tungsten Phase 2: Spark as a “Compiler”
Functionality of a generalpurpose
execution engine; performanceas if
hand built system just to run your query
Performance of Core Primitives
cost per row (single thread)
primitive Spark 1.6 Spark 2.0
filter 15 ns 1.1 ns
sum w/o group 14 ns 0.9 ns
sum w/ group 79 ns 10.7 ns
hash join 115 ns 4.0 ns
sort (8 bit entropy) 620 ns 5.3 ns
sort (64 bit entropy) 620 ns 40 ns
sort-merge join 750 ns 700 ns
Intel Haswell i7 4960HQ 2.6GHz, HotSpot 1.8.0_60-b27, Mac OS X 10.11
0
100
200
300
400
500
600
Runtime(seconds) Preliminary TPC-DS Spark2.0 vs 1.6 – Lower is Better
Time (1.6)
Time (2.0)
Databricks
Community Edition
Best place to try & learn Spark.
Apache Spark 2.0: Faster, Easier, and Smarter
Release Schedule
Today: work-in-progresssource code available on GitHub
Next week: preview of Spark 2.0 in Databricks Community Edition
Early June: Apache Spark 2.0 GA
Today’s talk
Spark 2.0 doubles down on what made Spark attractive:
• Faster: Project Tungsten Phase 2, i.e. “Spark as a compiler”
• Easier: unified APIs& SQL 2003
• Smarter: Structured Streaming
• Only scratched the surface here, as Spark 2.0 will resolve ~ 2000 tickets.
Learn Spark on Databricks Community Edition
• join beta waitlist https://databricks.com/ce/
Discount code: Meetup16SF
Thank you.
Don’tforgettoregisterforSparkSummitSF!

More Related Content

What's hot

Flink Forward San Francisco 2019: Moving from Lambda and Kappa Architectures ...
Flink Forward San Francisco 2019: Moving from Lambda and Kappa Architectures ...Flink Forward San Francisco 2019: Moving from Lambda and Kappa Architectures ...
Flink Forward San Francisco 2019: Moving from Lambda and Kappa Architectures ...
Flink Forward
 
Introduction to Redis
Introduction to RedisIntroduction to Redis
Introduction to Redis
Dvir Volk
 
MongoDB World 2018: Active-Active Application Architectures: Become a MongoDB...
MongoDB World 2018: Active-Active Application Architectures: Become a MongoDB...MongoDB World 2018: Active-Active Application Architectures: Become a MongoDB...
MongoDB World 2018: Active-Active Application Architectures: Become a MongoDB...
MongoDB
 
Databricks for Dummies
Databricks for DummiesDatabricks for Dummies
Databricks for Dummies
Rodney Joyce
 
Intro to databricks delta lake
 Intro to databricks delta lake Intro to databricks delta lake
Intro to databricks delta lake
Mykola Zerniuk
 
What is in a Lucene index?
What is in a Lucene index?What is in a Lucene index?
What is in a Lucene index?
lucenerevolution
 
Sql vs NoSQL-Presentation
 Sql vs NoSQL-Presentation Sql vs NoSQL-Presentation
Sql vs NoSQL-Presentation
Shubham Tomar
 
What is langchain
What is langchainWhat is langchain
What is langchain
Bluebash
 
DNS Security Presentation ISSA
DNS Security Presentation ISSADNS Security Presentation ISSA
DNS Security Presentation ISSA
Srikrupa Srivatsan
 
Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...
Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...
Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...
Simplilearn
 
Semantic Technologies for Big Data
Semantic Technologies for Big DataSemantic Technologies for Big Data
Semantic Technologies for Big Data
Marin Dimitrov
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake Overview
James Serra
 
Azure Synapse Analytics
Azure Synapse AnalyticsAzure Synapse Analytics
Azure Synapse Analytics
WinWire Technologies Inc
 
Hive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas PatilHive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas Patil
Databricks
 
Hardware planning & sizing for sql server
Hardware planning & sizing for sql serverHardware planning & sizing for sql server
Hardware planning & sizing for sql server
Davide Mauri
 
In memory databases presentation
In memory databases presentationIn memory databases presentation
In memory databases presentation
Michael Keane
 
Databricks Delta Lake and Its Benefits
Databricks Delta Lake and Its BenefitsDatabricks Delta Lake and Its Benefits
Databricks Delta Lake and Its Benefits
Databricks
 
Easy, scalable, fault tolerant stream processing with structured streaming - ...
Easy, scalable, fault tolerant stream processing with structured streaming - ...Easy, scalable, fault tolerant stream processing with structured streaming - ...
Easy, scalable, fault tolerant stream processing with structured streaming - ...
Databricks
 
Moving to Databricks & Delta
Moving to Databricks & DeltaMoving to Databricks & Delta
Moving to Databricks & Delta
Databricks
 
Apache Flink and what it is used for
Apache Flink and what it is used forApache Flink and what it is used for
Apache Flink and what it is used for
Aljoscha Krettek
 

What's hot (20)

Flink Forward San Francisco 2019: Moving from Lambda and Kappa Architectures ...
Flink Forward San Francisco 2019: Moving from Lambda and Kappa Architectures ...Flink Forward San Francisco 2019: Moving from Lambda and Kappa Architectures ...
Flink Forward San Francisco 2019: Moving from Lambda and Kappa Architectures ...
 
Introduction to Redis
Introduction to RedisIntroduction to Redis
Introduction to Redis
 
MongoDB World 2018: Active-Active Application Architectures: Become a MongoDB...
MongoDB World 2018: Active-Active Application Architectures: Become a MongoDB...MongoDB World 2018: Active-Active Application Architectures: Become a MongoDB...
MongoDB World 2018: Active-Active Application Architectures: Become a MongoDB...
 
Databricks for Dummies
Databricks for DummiesDatabricks for Dummies
Databricks for Dummies
 
Intro to databricks delta lake
 Intro to databricks delta lake Intro to databricks delta lake
Intro to databricks delta lake
 
What is in a Lucene index?
What is in a Lucene index?What is in a Lucene index?
What is in a Lucene index?
 
Sql vs NoSQL-Presentation
 Sql vs NoSQL-Presentation Sql vs NoSQL-Presentation
Sql vs NoSQL-Presentation
 
What is langchain
What is langchainWhat is langchain
What is langchain
 
DNS Security Presentation ISSA
DNS Security Presentation ISSADNS Security Presentation ISSA
DNS Security Presentation ISSA
 
Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...
Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...
Big Data Tutorial | What Is Big Data | Big Data Hadoop Tutorial For Beginners...
 
Semantic Technologies for Big Data
Semantic Technologies for Big DataSemantic Technologies for Big Data
Semantic Technologies for Big Data
 
Data Lake Overview
Data Lake OverviewData Lake Overview
Data Lake Overview
 
Azure Synapse Analytics
Azure Synapse AnalyticsAzure Synapse Analytics
Azure Synapse Analytics
 
Hive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas PatilHive Bucketing in Apache Spark with Tejas Patil
Hive Bucketing in Apache Spark with Tejas Patil
 
Hardware planning & sizing for sql server
Hardware planning & sizing for sql serverHardware planning & sizing for sql server
Hardware planning & sizing for sql server
 
In memory databases presentation
In memory databases presentationIn memory databases presentation
In memory databases presentation
 
Databricks Delta Lake and Its Benefits
Databricks Delta Lake and Its BenefitsDatabricks Delta Lake and Its Benefits
Databricks Delta Lake and Its Benefits
 
Easy, scalable, fault tolerant stream processing with structured streaming - ...
Easy, scalable, fault tolerant stream processing with structured streaming - ...Easy, scalable, fault tolerant stream processing with structured streaming - ...
Easy, scalable, fault tolerant stream processing with structured streaming - ...
 
Moving to Databricks & Delta
Moving to Databricks & DeltaMoving to Databricks & Delta
Moving to Databricks & Delta
 
Apache Flink and what it is used for
Apache Flink and what it is used forApache Flink and what it is used for
Apache Flink and what it is used for
 

Viewers also liked

Introduction to Spark Internals
Introduction to Spark InternalsIntroduction to Spark Internals
Introduction to Spark Internals
Pietro Michiardi
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
Deep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDeep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache Spark
Databricks
 
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Spark Summit
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Rahul Jain
 
SQL to Hive Cheat Sheet
SQL to Hive Cheat SheetSQL to Hive Cheat Sheet
SQL to Hive Cheat Sheet
Hortonworks
 
How to understand and analyze Apache Hive query execution plan for performanc...
How to understand and analyze Apache Hive query execution plan for performanc...How to understand and analyze Apache Hive query execution plan for performanc...
How to understand and analyze Apache Hive query execution plan for performanc...
DataWorks Summit/Hadoop Summit
 
MapR Tutorial Series
MapR Tutorial SeriesMapR Tutorial Series
MapR Tutorial Series
selvaraaju
 
AWS re:Invent 2016: Fraud Detection with Amazon Machine Learning on AWS (FIN301)
AWS re:Invent 2016: Fraud Detection with Amazon Machine Learning on AWS (FIN301)AWS re:Invent 2016: Fraud Detection with Amazon Machine Learning on AWS (FIN301)
AWS re:Invent 2016: Fraud Detection with Amazon Machine Learning on AWS (FIN301)
Amazon Web Services
 
Hands on MapR -- Viadea
Hands on MapR -- ViadeaHands on MapR -- Viadea
Hands on MapR -- Viadea
viadea
 
Simplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache SparkSimplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache Spark
Databricks
 
Apache Spark & Hadoop
Apache Spark & HadoopApache Spark & Hadoop
Apache Spark & Hadoop
MapR Technologies
 
MapR M7: Providing an enterprise quality Apache HBase API
MapR M7: Providing an enterprise quality Apache HBase APIMapR M7: Providing an enterprise quality Apache HBase API
MapR M7: Providing an enterprise quality Apache HBase API
mcsrivas
 
MapR and Cisco Make IT Better
MapR and Cisco Make IT BetterMapR and Cisco Make IT Better
MapR and Cisco Make IT Better
MapR Technologies
 
Modern Data Architecture
Modern Data ArchitectureModern Data Architecture
Modern Data Architecture
Alexey Grishchenko
 
Architectural Overview of MapR's Apache Hadoop Distribution
Architectural Overview of MapR's Apache Hadoop DistributionArchitectural Overview of MapR's Apache Hadoop Distribution
Architectural Overview of MapR's Apache Hadoop Distribution
mcsrivas
 
Deep Learning for Fraud Detection
Deep Learning for Fraud DetectionDeep Learning for Fraud Detection
Deep Learning for Fraud Detection
DataWorks Summit/Hadoop Summit
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov
 
MapR Data Analyst
MapR Data AnalystMapR Data Analyst
MapR Data Analyst
selvaraaju
 

Viewers also liked (19)

Introduction to Spark Internals
Introduction to Spark InternalsIntroduction to Spark Internals
Introduction to Spark Internals
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
 
Deep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDeep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache Spark
 
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
 
SQL to Hive Cheat Sheet
SQL to Hive Cheat SheetSQL to Hive Cheat Sheet
SQL to Hive Cheat Sheet
 
How to understand and analyze Apache Hive query execution plan for performanc...
How to understand and analyze Apache Hive query execution plan for performanc...How to understand and analyze Apache Hive query execution plan for performanc...
How to understand and analyze Apache Hive query execution plan for performanc...
 
MapR Tutorial Series
MapR Tutorial SeriesMapR Tutorial Series
MapR Tutorial Series
 
AWS re:Invent 2016: Fraud Detection with Amazon Machine Learning on AWS (FIN301)
AWS re:Invent 2016: Fraud Detection with Amazon Machine Learning on AWS (FIN301)AWS re:Invent 2016: Fraud Detection with Amazon Machine Learning on AWS (FIN301)
AWS re:Invent 2016: Fraud Detection with Amazon Machine Learning on AWS (FIN301)
 
Hands on MapR -- Viadea
Hands on MapR -- ViadeaHands on MapR -- Viadea
Hands on MapR -- Viadea
 
Simplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache SparkSimplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache Spark
 
Apache Spark & Hadoop
Apache Spark & HadoopApache Spark & Hadoop
Apache Spark & Hadoop
 
MapR M7: Providing an enterprise quality Apache HBase API
MapR M7: Providing an enterprise quality Apache HBase APIMapR M7: Providing an enterprise quality Apache HBase API
MapR M7: Providing an enterprise quality Apache HBase API
 
MapR and Cisco Make IT Better
MapR and Cisco Make IT BetterMapR and Cisco Make IT Better
MapR and Cisco Make IT Better
 
Modern Data Architecture
Modern Data ArchitectureModern Data Architecture
Modern Data Architecture
 
Architectural Overview of MapR's Apache Hadoop Distribution
Architectural Overview of MapR's Apache Hadoop DistributionArchitectural Overview of MapR's Apache Hadoop Distribution
Architectural Overview of MapR's Apache Hadoop Distribution
 
Deep Learning for Fraud Detection
Deep Learning for Fraud DetectionDeep Learning for Fraud Detection
Deep Learning for Fraud Detection
 
Apache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
 
MapR Data Analyst
MapR Data AnalystMapR Data Analyst
MapR Data Analyst
 

Similar to Apache Spark 2.0: Faster, Easier, and Smarter

Profiling & Testing with Spark
Profiling & Testing with SparkProfiling & Testing with Spark
Profiling & Testing with Spark
Roger Rafanell Mas
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQL
Yousun Jeong
 
Unified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkUnified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache Spark
C4Media
 
Spark streaming state of the union
Spark streaming state of the unionSpark streaming state of the union
Spark streaming state of the union
Databricks
 
Unified Big Data Processing with Apache Spark (QCON 2014)
Unified Big Data Processing with Apache Spark (QCON 2014)Unified Big Data Processing with Apache Spark (QCON 2014)
Unified Big Data Processing with Apache Spark (QCON 2014)
Databricks
 
A look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsA look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutions
Databricks
 
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark StreamingTiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Paco Nathan
 
What's new in spark 2.0?
What's new in spark 2.0?What's new in spark 2.0?
What's new in spark 2.0?
Örjan Lundberg
 
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a LaptopProject Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Databricks
 
A Journey into Databricks' Pipelines: Journey and Lessons Learned
A Journey into Databricks' Pipelines: Journey and Lessons LearnedA Journey into Databricks' Pipelines: Journey and Lessons Learned
A Journey into Databricks' Pipelines: Journey and Lessons Learned
Databricks
 
The Future of Real-Time in Spark
The Future of Real-Time in SparkThe Future of Real-Time in Spark
The Future of Real-Time in Spark
Reynold Xin
 
The Future of Real-Time in Spark
The Future of Real-Time in SparkThe Future of Real-Time in Spark
The Future of Real-Time in Spark
Databricks
 
Tecnicas e Instrumentos de Recoleccion de Datos
Tecnicas e Instrumentos de Recoleccion de DatosTecnicas e Instrumentos de Recoleccion de Datos
Tecnicas e Instrumentos de Recoleccion de Datos
Angel Giraldo
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Spark Summit
 
Spark Summit EU 2016 Keynote - Simplifying Big Data in Apache Spark 2.0
Spark Summit EU 2016 Keynote - Simplifying Big Data in Apache Spark 2.0Spark Summit EU 2016 Keynote - Simplifying Big Data in Apache Spark 2.0
Spark Summit EU 2016 Keynote - Simplifying Big Data in Apache Spark 2.0
Databricks
 
SamzaSQL QCon'16 presentation
SamzaSQL QCon'16 presentationSamzaSQL QCon'16 presentation
SamzaSQL QCon'16 presentation
Yi Pan
 
Project Tungsten: Bringing Spark Closer to Bare Metal
Project Tungsten: Bringing Spark Closer to Bare MetalProject Tungsten: Bringing Spark Closer to Bare Metal
Project Tungsten: Bringing Spark Closer to Bare Metal
Databricks
 
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14thSnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscape
Paco Nathan
 

Similar to Apache Spark 2.0: Faster, Easier, and Smarter (20)

Profiling & Testing with Spark
Profiling & Testing with SparkProfiling & Testing with Spark
Profiling & Testing with Spark
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQL
 
Unified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache SparkUnified Big Data Processing with Apache Spark
Unified Big Data Processing with Apache Spark
 
Spark streaming state of the union
Spark streaming state of the unionSpark streaming state of the union
Spark streaming state of the union
 
Unified Big Data Processing with Apache Spark (QCON 2014)
Unified Big Data Processing with Apache Spark (QCON 2014)Unified Big Data Processing with Apache Spark (QCON 2014)
Unified Big Data Processing with Apache Spark (QCON 2014)
 
A look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutionsA look under the hood at Apache Spark's API and engine evolutions
A look under the hood at Apache Spark's API and engine evolutions
 
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark StreamingTiny Batches, in the wine: Shiny New Bits in Spark Streaming
Tiny Batches, in the wine: Shiny New Bits in Spark Streaming
 
What's new in spark 2.0?
What's new in spark 2.0?What's new in spark 2.0?
What's new in spark 2.0?
 
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a LaptopProject Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
Project Tungsten Phase II: Joining a Billion Rows per Second on a Laptop
 
A Journey into Databricks' Pipelines: Journey and Lessons Learned
A Journey into Databricks' Pipelines: Journey and Lessons LearnedA Journey into Databricks' Pipelines: Journey and Lessons Learned
A Journey into Databricks' Pipelines: Journey and Lessons Learned
 
The Future of Real-Time in Spark
The Future of Real-Time in SparkThe Future of Real-Time in Spark
The Future of Real-Time in Spark
 
The Future of Real-Time in Spark
The Future of Real-Time in SparkThe Future of Real-Time in Spark
The Future of Real-Time in Spark
 
Tecnicas e Instrumentos de Recoleccion de Datos
Tecnicas e Instrumentos de Recoleccion de DatosTecnicas e Instrumentos de Recoleccion de Datos
Tecnicas e Instrumentos de Recoleccion de Datos
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
 
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
 
Spark Summit EU 2016 Keynote - Simplifying Big Data in Apache Spark 2.0
Spark Summit EU 2016 Keynote - Simplifying Big Data in Apache Spark 2.0Spark Summit EU 2016 Keynote - Simplifying Big Data in Apache Spark 2.0
Spark Summit EU 2016 Keynote - Simplifying Big Data in Apache Spark 2.0
 
SamzaSQL QCon'16 presentation
SamzaSQL QCon'16 presentationSamzaSQL QCon'16 presentation
SamzaSQL QCon'16 presentation
 
Project Tungsten: Bringing Spark Closer to Bare Metal
Project Tungsten: Bringing Spark Closer to Bare MetalProject Tungsten: Bringing Spark Closer to Bare Metal
Project Tungsten: Bringing Spark Closer to Bare Metal
 
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14thSnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
SnappyData Ad Analytics Use Case -- BDAM Meetup Sept 14th
 
How Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscapeHow Apache Spark fits into the Big Data landscape
How Apache Spark fits into the Big Data landscape
 

More from Databricks

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
 

Recently uploaded

RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptxRPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
SynapseIndia
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
Zilliz
 
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
Edge AI and Vision Alliance
 
Introduction-to-the-IAM-Platform-Implementation-Plan.pptx
Introduction-to-the-IAM-Platform-Implementation-Plan.pptxIntroduction-to-the-IAM-Platform-Implementation-Plan.pptx
Introduction-to-the-IAM-Platform-Implementation-Plan.pptx
313mohammedarshad
 
Evolution of iPaaS - simplify IT workloads to provide a unified view of data...
Evolution of iPaaS - simplify IT workloads to provide a unified view of  data...Evolution of iPaaS - simplify IT workloads to provide a unified view of  data...
Evolution of iPaaS - simplify IT workloads to provide a unified view of data...
Torry Harris
 
Figma AI Design Generator_ In-Depth Review.pdf
Figma AI Design Generator_ In-Depth Review.pdfFigma AI Design Generator_ In-Depth Review.pdf
Figma AI Design Generator_ In-Depth Review.pdf
Management Institute of Skills Development
 
Choose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presenceChoose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presence
rajancomputerfbd
 
Best Practices for Effectively Running dbt in Airflow.pdf
Best Practices for Effectively Running dbt in Airflow.pdfBest Practices for Effectively Running dbt in Airflow.pdf
Best Practices for Effectively Running dbt in Airflow.pdf
Tatiana Al-Chueyr
 
"Mastering Graphic Design: Essential Tips and Tricks for Beginners and Profes...
"Mastering Graphic Design: Essential Tips and Tricks for Beginners and Profes..."Mastering Graphic Design: Essential Tips and Tricks for Beginners and Profes...
"Mastering Graphic Design: Essential Tips and Tricks for Beginners and Profes...
Anant Gupta
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
Matthias Neugebauer
 
How to Build a Profitable IoT Product.pptx
How to Build a Profitable IoT Product.pptxHow to Build a Profitable IoT Product.pptx
How to Build a Profitable IoT Product.pptx
Adam Dunkels
 
Amul milk launches in US: Key details of its new products ...
Amul milk launches in US: Key details of its new products ...Amul milk launches in US: Key details of its new products ...
Amul milk launches in US: Key details of its new products ...
chetankumar9855
 
The Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF GuideThe Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF Guide
Shiv Technolabs
 
WhatsApp Spy Online Trackers and Monitoring Apps
WhatsApp Spy Online Trackers and Monitoring AppsWhatsApp Spy Online Trackers and Monitoring Apps
WhatsApp Spy Online Trackers and Monitoring Apps
HackersList
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
HackersList
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
sunilverma7884
 
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdfAcumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
BrainSell Technologies
 
Dublin_mulesoft_meetup_Mulesoft_Salesforce_Integration (1).pptx
Dublin_mulesoft_meetup_Mulesoft_Salesforce_Integration (1).pptxDublin_mulesoft_meetup_Mulesoft_Salesforce_Integration (1).pptx
Dublin_mulesoft_meetup_Mulesoft_Salesforce_Integration (1).pptx
Kunal Gupta
 
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Nicolás Lopéz
 
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdfBT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
Neo4j
 

Recently uploaded (20)

RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptxRPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
RPA In Healthcare Benefits, Use Case, Trend And Challenges 2024.pptx
 
Using LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and MilvusUsing LLM Agents with Llama 3, LangGraph and Milvus
Using LLM Agents with Llama 3, LangGraph and Milvus
 
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
“Deploying Large Language Models on a Raspberry Pi,” a Presentation from Usef...
 
Introduction-to-the-IAM-Platform-Implementation-Plan.pptx
Introduction-to-the-IAM-Platform-Implementation-Plan.pptxIntroduction-to-the-IAM-Platform-Implementation-Plan.pptx
Introduction-to-the-IAM-Platform-Implementation-Plan.pptx
 
Evolution of iPaaS - simplify IT workloads to provide a unified view of data...
Evolution of iPaaS - simplify IT workloads to provide a unified view of  data...Evolution of iPaaS - simplify IT workloads to provide a unified view of  data...
Evolution of iPaaS - simplify IT workloads to provide a unified view of data...
 
Figma AI Design Generator_ In-Depth Review.pdf
Figma AI Design Generator_ In-Depth Review.pdfFigma AI Design Generator_ In-Depth Review.pdf
Figma AI Design Generator_ In-Depth Review.pdf
 
Choose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presenceChoose our Linux Web Hosting for a seamless and successful online presence
Choose our Linux Web Hosting for a seamless and successful online presence
 
Best Practices for Effectively Running dbt in Airflow.pdf
Best Practices for Effectively Running dbt in Airflow.pdfBest Practices for Effectively Running dbt in Airflow.pdf
Best Practices for Effectively Running dbt in Airflow.pdf
 
"Mastering Graphic Design: Essential Tips and Tricks for Beginners and Profes...
"Mastering Graphic Design: Essential Tips and Tricks for Beginners and Profes..."Mastering Graphic Design: Essential Tips and Tricks for Beginners and Profes...
"Mastering Graphic Design: Essential Tips and Tricks for Beginners and Profes...
 
Opencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of MünsterOpencast Summit 2024 — Opencast @ University of Münster
Opencast Summit 2024 — Opencast @ University of Münster
 
How to Build a Profitable IoT Product.pptx
How to Build a Profitable IoT Product.pptxHow to Build a Profitable IoT Product.pptx
How to Build a Profitable IoT Product.pptx
 
Amul milk launches in US: Key details of its new products ...
Amul milk launches in US: Key details of its new products ...Amul milk launches in US: Key details of its new products ...
Amul milk launches in US: Key details of its new products ...
 
The Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF GuideThe Role of IoT in Australian Mobile App Development - PDF Guide
The Role of IoT in Australian Mobile App Development - PDF Guide
 
WhatsApp Spy Online Trackers and Monitoring Apps
WhatsApp Spy Online Trackers and Monitoring AppsWhatsApp Spy Online Trackers and Monitoring Apps
WhatsApp Spy Online Trackers and Monitoring Apps
 
How Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdfHow Social Media Hackers Help You to See Your Wife's Message.pdf
How Social Media Hackers Help You to See Your Wife's Message.pdf
 
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
Girls call Kolkata 👀 XXXXXXXXXXX 👀 Rs.9.5 K Cash Payment With Room Delivery
 
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdfAcumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
Acumatica vs. Sage Intacct vs. NetSuite _ NOW CFO.pdf
 
Dublin_mulesoft_meetup_Mulesoft_Salesforce_Integration (1).pptx
Dublin_mulesoft_meetup_Mulesoft_Salesforce_Integration (1).pptxDublin_mulesoft_meetup_Mulesoft_Salesforce_Integration (1).pptx
Dublin_mulesoft_meetup_Mulesoft_Salesforce_Integration (1).pptx
 
Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024Vertex AI Agent Builder - GDG Alicante - Julio 2024
Vertex AI Agent Builder - GDG Alicante - Julio 2024
 
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdfBT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
BT & Neo4j: Knowledge Graphs for Critical Enterprise Systems.pptx.pdf
 

Apache Spark 2.0: Faster, Easier, and Smarter